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1 The graph of f ( )y x  is shown below. 

 

 

 

         

 

 

 

 

 

 

(a) The graph of f (2 )y x   is obtained when the graph of f ( )y x  undergoes a 

sequence of transformations.  Describe the sequence of transformations.    [2] 

(b) Sketch the graph of f '( )y x , stating the equations of any asymptotes and the 

coordinates of any points of intersection with the axes.       [3]  

 

2  
 
 
 
 
 
 

 
 
The diagram shows two points at ground level, A and B.  The distance in metres between 
A and B is denoted by x.  The angle of elevation of C from B is twice the angle of elevation 

of C from A.  The distance AC is 200 m and 
3

BAC


   radians. Show that  

200sin
2

sin
3

x





 
 
 

.       [2] 

It is given that  is a small angle such that  4 and higher powers of  are negligible.  By 
using appropriate expansions from the List of Formulae (MF26), show that  

22700 250

9
x


 .      [4] 
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3  
 

 
 

 

 

 

 

 

 

The diagram above shows a circle C which passes through the origin O and the points A 
and B. 

It is given that 4OA   units and 3OB   units. 

(i) Show that the coordinates of the centre of C is 
3

2,
2

 
 
 

.   Hence write down the 

equation of C in the form  
2

2 23
2

2
x y r     

 
, where r is a constant to be 

determined.            [2] 
 
 

(ii) By adding a suitable line to the diagram above, find the range of values of m for 

which the equation 23 25
( 2)

2 4
mx x     has a solution.      [4] 

 

4 The curve C has equation sin 2 2 cosy x x  , 0 2x   .  

 
(i) Using an algebraic method, find the exact x-coordinates of the stationary points.  

[You do not need to determine the nature of the stationary points.]     [3] 
 
(ii) Sketch the curve C, indicating clearly the coordinates of the turning points and the 

intersection with the axes.          [1] 

(iii) Find the area bounded by the curve C and the line 
1

y x .      [3] 

 
  

B 

y 

x 
O A 

3 

4 



4  
 

TJC/MA 9758/Preliminary Exams 2017 

5 The curve C has equation 3y kx . The tangent at the point P on C meets the curve again 

at point Q. The tangent at point Q meets the curve again at point R. If the x coordinates 
of P, Q and R are p, q, and r respectively where 0p  .  

(i) Show that p and q satisfy the equation 
2

2 0
q q

p p

   
     

   
.      [4] 

 
(ii) Show that p, q and r are three consecutive terms of a geometric progression. Hence 

determine if this geometric series is convergent.        [4] 

  [You may use the identity   3 3 2 2a b a b a ab b      for ,a b .]   

 

 

6 (a) The vectors a and b are the position vector of points A and B respectively. It is 

given that 2 7OA  , 2 3  b i j k  and   a b .   

 
(i) Find angle AOB.      [2] 

 

(ii) State the geometrical meaning of ˆ a b , where â  is the unit vector of a.  [1] 

 
(iii) Hence or otherwise, find the position vector of the foot of perpendicular from 

B to line OA in terms of a.     [2] 

 

(b) The non-zero vectors p and q are such that 2 p q . Given that p is a unit vector 

and 4 q q , show that p and q are perpendicular to each other.     [3] 
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7 

 

 

 

 

 

 

 

The diagram shows a shot put being projected with a velocity v ms1 from the point O at 
an angle   made with the horizontal. The point O is 1.5m above the point A on the ground.  
The   x-y plane is taken to be the plane that contains the trajectory of this projectile motion 
with x-axis parallel to the horizontal and O being the origin.  The equation of the 
trajectory of this projectile motion is known to be 

2

2 2
tan

2 cos

gx
y x

v



  ,       

where g ms2 is the acceleration due to gravity. 

The constant g is taken to be 10 and the distance between A and B is denoted by h m.  
Given that v = 10, show that h satisfies the equation 

    2 10 sin 2 15cos 2 15 0h h      .     [3] 

As  varies, h varies. Show that stationary value of h occurs when   satisfies the 
following equation 

23 tan 2 20sin 2 tan 2 20 cos 2 20 0       .    [5] 

Hence find the stationary value of h.        [2] 

 

8 (a) In an Argand diagram, points P  and Q  represent the complex numbers  

  1 2 3iz    and 2 1iz z .  

(i) Find the area of the triangle OPQ , where O  is the origin.      [2] 

 

(ii) 1z  and 2z  are roots of the equation   2 2 0z az b z cz d     , where 

, , ,a b c d R .  Find , ,  and a b c d .        [4] 

 (b) Without using the graphing calculator, find in exact form, the modulus and 

argument of 

14

3 i
*

1 i
v

 
     

. Hence express v  in exponential form.   [5] 

O 

y 

x  

1.5m 

A B 
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9 A curve C has parametric equation defined by  

4secx t  and  8 1 tany t   where 
4 4

t
 

   . 

(i) Find 
d

d

y

x
 in terms of t and hence show that the equation of tangent at the point 

6
t


   is  4 8 1 3y x   .         [3] 

(ii) Find the Cartesian equation of C.       [2] 

R is the region bounded by C, the tangent in (i), the normal to C at t = 0 and the x axis. 

Part of an oil burner is formed by rotating R 2  radians about the y-axis as shown in the 

diagram below (not drawn to scale).  The base of the burner is a solid cylinder of thickness 
1 cm.  

[You may assume each unit along the x and y axis to be 1 cm] 

 

 

 

 

 

 

 

 

 
 

Find the volume of the material required to make the burner.        [6] 
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10 The point A has coordinates (3,1,1) . The line l has equation 

1 2

1 1

1 1

r 
   
       
      

 , where   

is a parameter.  P is a point on l when t  . 

(i) Find cosine of the acute angle between AP and l in terms of t.  Hence or otherwise, 
find the position vector of the point N on l such that N is the closest point to A. 
              [6] 

(ii) Find the coordinates of the point of reflection of A in l.        [2] 

The line L has equation 1x   , 2 2y z  . 

(iii) Determine whether L and l are skew lines.        [2]  

(iv) Find the shortest distance from A to L.         [3]  

 

11 A hot air balloon rises vertically upwards from the ground as the balloon operator 

intermittently fires and turns off the burner.  At time t minutes, the balloon ascends at a 

rate inversely proportional to t  , where  is a positive constant.  At the same time, 

due to atmospheric factors, the balloon descends at a rate of 2 km per minute.   It is also 

known that initially the rate of change of the height of the balloon is 1 km per minute. 

(i) Find a differential equation expressing the relation between H and t, where H km 

is the height of the hot air balloon above ground at time t minutes.   Hence solve 

the differential equation and find H in terms of t and  .    [7] 

Using 15  , 

(ii) Find the maximum height of the balloon above ground in exact form.   [3] 

(iii) Find the total vertical distance travelled by the balloon when 8t  .   [3] 

(iv) Can we claim that the rate of change of the height of the balloon above the ground 

is decreasing?  Explain your answer.       [2] 

 


