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1 The first three terms of a sequence are given by u, =70, u, =136, u,=198.
Given that u, is a quadratic polynomial in n, find u, in terms of n. [4]

— 3
A sequence Uy, U, U,, ... is given by u, =3 and u, =u, ,+2"—n for n>1.

Find u,, u, and u,. [3]

By considering Z(ur —Uu,,), find a formula for u_ in terms of n. [5]
r=1

By sketching the graphs of y=e* and y=2e*-1, solve the inequality

e” >2e -1, [3]

Hence, without using a calculator, find

J‘_Zl ‘ezx —2e* +]4 dx,

giving your answer in terms of e. [4]

2
()
(i)
3
4
()
(i)
(iii)
(iv)
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The function f is defined by

2X+6
4-X

fixe

, xell, x=#4

Sketch the graph of y=f(x), giving the equations of any asymptotes and the
coordinates of the points where the curve crosses the axes. Hence state the range
of f. [3]
Determine whether the function f* exists, justifying your answer. [1]

The function f™ exists if the domain of f is further restricted to x < k . State
the greatest value of k. [1]

Using the domain in (iii), find y =f~'(x) and state the domain of ™. [4]

[Turn Over]



5 A curve is given parametrically by the equations
x=2t-1 y= ! ,
2t+1
1

where tell , t;t—E.

(i) Sketch the curve, labelling the axial intercepts and asymptotes. [2]

(i)  Find the equation of the tangent to the curve at the point P(-1,1). [3]

(iii)  State the range of values of m for which the line y = mx does not intersect the
curve. [1]

(iv) The normal to the curve at P meets the curve again at Q. Find the coordinates of

Q. [4]

6 Two expedition teams are to climb a vertical distance of 8500 m from the foot to the
peak of a mountain over a period of time.

(i) Team A plans to cover a vertical distance of 400 m on the first day. On each
subsequent day, the vertical distance covered is 5 m less than the vertical
distance covered in the previous day. Find the number of days required for Team
A to reach the peak. [2]

(i) Team B plans to cover a vertical distance of 800 m on the first day. On each
subsequent day, the vertical distance covered is 90% of the vertical distance
covered in the previous day. On which day will Team A overtake Team B? [3]

(iii) Explain why Team B will never be able to reach the peak. [2]
(iv) At the end of the 15" day, Team B decided to modify their plan, such that on
each subsequent day, the vertical distance covered is 95% of the vertical

distance covered in the previous day. Which team will be the first to reach the
peak of the mountain? Justify your answer. [5]
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7 The curve C has equation y = 24 X=3
(x—2)(x+1)
(i) Find algebraically the set of values that y can take. [5]
(i) Sketch C, giving the coordinates of the axial intercepts, turning points and
equations of any asymptotes. [3]
(iii) By adding an appropriate graph to the sketch of C, determine the range of values
—3)
of k such that the equation (x—2)°+ (XZ ) ~=k* has at least one
(x—2)"(x+1)
negative real root. [4]
8 (a) Find J"/l—_x dx by using the substitution x =sin® @, where 0< @ <%. [6]
X
(b) The diagram below shows a sketch of part of the curve y = cos(xz) .
y
A
y=con(?)
> X
0 \

Find the exact volume of the solid generated when the region bounded by the
curvey = cos(xz), the axes and the line x :% is rotated through 2 radians
about the y-axis. [7]
@PJC 2017 [Turn Over]



Fig. 1 Fig. 2 Fig. 3

Fig. 1 shows a piece of circular card of radius 15 cm. A star shape, which consists of
a regular hexagon of side 2x cm and 6 isosceles triangles, is cut out from the card to
give the shape shown in Fig. 2. The remaining card shown in Fig. 2 is folded along the
dotted lines to form a pyramid of height h cm as shown in Fig. 3.

(The diagrams are not drawn to scale).

(i)

(i)

(iii)

(iv)

@PJC 2017

By considering triangle AOM as shown in Fig. 3, where O is the centre of the
hexagon and M is the midpoint of a side of the hexagon, show that

h? = 225-304/3x. [3]

Hence show that the volume V of the pyramid is given by

V2 =180x* (15— 2+/3x). [3]

Use differentiation to find the maximum value of V, proving that it is a
maximum. [5]
Determine the value of h for which V is maximum. [1]
[Turn Over]



10

The plane p contains the point A with coordinates (—3,4, —2) and the line | with

equation x+2=4;3y,z =0.

(i) Find a cartesian equation of p. [3]

(i)  Find a vector equation of the line which is a reflection of | in the y-axis. [4]

The line m passes through A and the point (-9,9,—6).

(iii)  Find the acute angle between | and m. [2]

(iv) Find the coordinates of the points on m that are equidistant from p and the x-y
plane. [4]

@PJC 2017



Pioneer Junior College
H2 Mathematics JC2 2017
JC2 H2 Preliminary Examination Paper 1 (Solution)

Q1

u =an’+bn+c
u=a(l)+b(l)+c=70 =  a+b+c=70 )
u,=a(2)’+b(2)+c=136 = 4a+2b+c=136 (2

u,=a(3)’+b(3)+c=198 =  9a+3b+c=198  (3)

Using GC
a=-2, b=72, ¢c=0

u,=-2n°+72n

Q2
(i)
2 3
U =u,+2-1 U, =u,+2°-2 U, =U,+2° -3
:§+2—1 =§+4—2 =g+8—3
2 2 2
_3 _9 _
2 2 2
(if)
u,—u,,=2"-n

Up.— Uy
+U, =4,
+U; —U,

_2(1-2") n(n+))
1-2 2

—
n-1 L'n—z

+U, ., -t

+U
+U, =Y,

@PJC 2017 [Turn Over]



. 21-2") n(n+))

"0 12 2
u, :—2(1—2”)—M+g
:2"+1_£_M
2 2
Q3
___________________ 'x
e >2e7 -1
x>0

For x>0, e¥*>2e*-1=e"*-2e*+1>0
Forx<0, e®*-2e*+1<0.

2 0 2

J‘ ‘ezx —2e™* +1‘ dx = J. —(e* —2e7* +1) dx +.[ (e —2e7* +1) dx
-1 -1 0

2

0
= —Fe“ +2e7" + x} J{lezx +287% + x}
2 L2

0

e 2]

=Lt igei2e? 2
2 2
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Q4
(i)

(i)

R; =[0,)

D; =(—0,4)U(4,0)or D, =0 \{4}
R; & Dy

f2 does not exists.

(i)

k=-3

Xxell, 0<x<2
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10

Q5
(i I
o oNem
o

(i) i

1 X==2
X=2t-1 y=

2t+1
*_, dy__ 2
dt dt  (2t+1)°
dy___ 1
dx  (2t+1)°
At the point P(-1,1),t=0
Wy
dx
Equation of tangent at P is
y—1=-1(x+1)
y =—X

y
(iii) 1
\

<
[l

@)
<V

The line y = mx does not cut the curve = -1<m<0

>
11
|

N
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11

(iv)

Gradient of normal at P =1
Equation of normal at P is
y-1=x-(-1)

y=X+2

Subst x =2t -1, yziinto y=X+2
2t+1

1
2t+1
(2t+1)° =1
2t+1=+1

=2t-1+2=2t+1

t=0 or t=-1
At the pointQ, t=-1
1

x=2(-1)-1=-3, y:m:—l

Coordinates of Q are (-3, -1)

Q6

(i)

AP with a=400, d =-5
S, =8500

2[2(400) +(n-1)(-5)] =8500
5n® —805n+17000=0
n=250r n=136 (rejected as already reached peak when n=25)

(i)

GP th a_800 r _90 FLOAT AUTOD REAL RADIAN HMP
Wi = =
Sn(AP) > Sn(GP)
D12(400) + (n-1)(-5)] > 2204 —09) L
2 -09 B | |
805n-5n° >16000(1-0.9") 24 | 8220 | 73619
' 25 8500 7H2E.7

. Z2b 87rE rH83.1
Using GC, 27 9045 | 753u.8
n> 20 28 9310 FE81.3
A will overtake B on the 20" day. X=18
(iii)
s. =99 _8000(< 8500)

1-0.9

Hence, Team B will never be able to reach the peak.
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12

(iv)
T,; =800(0.9"°*)=183.014

800(1—0.915)
S,=—— 2 -6352.871
1-0.9

Remaining distance =8500-6352.871=2147.129
First term of new GP =183.014x0.95=173.864
Snnence) = 2147.129

173.864(1—0.95")
1-0.95

0.95" =0.38253

n=18.7
Team B will take 15+19 = 34 days
Hence, Team A will reach the peak first.

=2147.129

Q7
(i)

. S W bl B
Consider the graph of y_2+(x—2)(x+1)

and y=p intersecting.

X—3
X*—x-2
PX2 — pX—2p—2x*+2X+4=x-3
(p—2)x*+(1—-p)x+(7-2p) =0
Discriminant >0
1-p)*—4(p-2)(7-2p)=0
1-2p+ p?-28p+8p®+56-16p =0
9p?—46p+57>0

p-2-

(9p-19)(p-3)=0 + B +
19 | |
<= or >3
p 9 p 19 3
1 9
y£2§ or y>3
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(ii)
_ x—3
il R TP
i i e i
1.64,0) \.
g

oV a (x—3)2 i
(x-2) (X—Z)Z(X-f-l)z “

(x=2)" +(y-2)" =k’

(x=3)
(x—2)(x+1)

Distance from centre of circle to the y — intercept of y =2+

k<-25 or k>25
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14

Q8
(@)

j LX x =sin® 6

X — g—2=25in00050
:Nl—.szn 9 2singcoso do

sin“ @

Since v/x =sin @
_ 2
_.[ZCOS odo Consider a right angle triangle
:J.(1+cos 20) d6 or use trigo identity

. cos?@+sin*0=1
:6?+Esin249+C

=@+sin@cosd+C \E

:sin‘l(\/;)+1/x(1—x)+c f

(b)

y:cos(xz)

x=0=>y=1

x=£:> y=cos£=i
2 4 2

Required volume

= ;{%]Z [%} + ﬂJ‘;E cos'y dy

2 1

4 4

4\/_ +7 cos Ly dy
J‘ cos™ydy Let u=cos™y yzl
dy
:ycosly—J— y — dy
dy 1-y?
= yCos™ y—— 2y

J1-y?
=ycos™ y—§[2(1— y2)5]+c

=ycosty—41-y* +¢

2

47\[/5 +7r[ycos‘1 y—+/1—- yz}
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Q9

J3x

OM =/(2x)? = x? =/3x
" AM =15-+/3x
Let h cm be the height of the pyramid.
h? = (15— +/3x)? — (+/3x)?
= 225-30/3x +3x% - 3%’
=225-30+/3x  (shown)

Area of hexagon = 6x area of triangle OBC

1

= 6(5)(2X)(\@X) Alternatively,

= 64/3x? V = 64/5x?)4/15 - 24/3x

21

s V= %(6\/§x2)\/225—30\/§x ‘fj—\; = (6x/§x2)%(15—2x/§x) 2(-2:/3)
V2 =180x* (15— 2+/3%) (shown)
V2 =180(15x" — 24/3%°)
Differentiating wrt x,

vV :180(60x3 —10J§x4)
dx

+ (15~ 243%)° (1245%)
12/5x(15- 2\/§X)% — 615X (15— 2\/§X)’%
6\/§X(15 — 2\/§X)_% [2(15 . 2\/§X) _ \/éx]
304/5x(6 —/3x)
Jas-20
dv
—=0=x=0 or x=

6
PN
dx J3 V3 (Z—V:O:x:0 or x:izzﬁ

(NA as x> 0) X 3
(NA as x> 0)

=1800x3(6—J§x) =

@PJC 2017 [Turn Over]
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To Prove Maximum

Method 1

dv  _(dv Y
2V —+2| — | =180|180x* —40/3x®
dx? (dxj [ v }

<0 sinceV >0

X =243, zTZ\Z/ :12%0[180(&/5)2 _40\/5(2@)3} _ 64\6/300

Method 2
X 34 2:/3=3.46 35
dVv 7855 0 4799
e = >0 ~——<0
dx 2V 2V

V is maximum when x = 2\/§ cm.
Max V = 7215 cm?.

(iv)
When x = 2/3, h? = 225-30+/3(2+/3)= 45
h=3J5 cm (reject h= —3J5ash> 0)

Q10
(1)

l'r=| 4 |+4] -3 Aell
0

p:6x+2y-3z=-4

@PJC 2017 [Turn Over]



17

(i)

To find intersection between y-axis and I, sub x =0 into |

0+2:4;3y:y:—2

Thus, point of intersection is (0, —2,0) .

Point of reflection of (—2,4,0) about y-axis is (2,4,0)
2 0 2 1
4|-1-2|=/6(=2|3
0 0 0 0

0 1
Line of reflection, I':r=| -2 |+5s| 3 sell
0 0
(iii)
-9 -3 -6
9 |-l 4 |=|5
—6 -2 —4
—-6\(1 6| 1
5[] -3]|=| 5 ||| -3|cos@
-4){ 0 -4 )\ 0
cosd = 21 21

J(-6) +5°+(-4)' 1P +F NG

6 =40.8°

iv
I(_e'z the point that is equidistant from both planes be C.
-3 6
OC=| 4 |+t| -5 for some tel]
-2 4
Distance of C from p = Distance of C from x-y plane
-3+6t -3 6 —3+6t 0)|(0
4-5t |-| 4 2 4-5t |-|0|[]0
—2+4t -2)|\-3 —2+4t) (0)|(1
J67 122+ 32 o Jorrorsr
|36t —10t —12t|
- -2+ 4|
[t/ =[2t-4
t* =4t* -4t +1 (ot 1 or
3t*-4t+1=0
@PJC 2017

t=-2t+1
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tzlort:l
3
-3 6 3 -3 6 -3
OC=| 4 |+@)|-5|=|-1 oC=| 4 +(§j -5 {%j 7
-2 4 2 -2 4 -2

or

The 2 points are (3,-1,2) and (—1%,—%}.
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