
Candidate Name: _____________________ CT Group: _____

 Index no. ______

PIONEER JUNIOR COLLEGE
JC 2 PRELIMINARY EXAMINATION

H2 COMPUTING 9597/01
 Paper 1
 Tuesday 13 SEP 2016 3 hours 15 min
TIME 0800 - 1115

Additional Materials:

 Removable storage device

 Question 1: AIRCON.txt, BLIND.txt, COMP.txt, EMPEROR.txt

 Question 2: ENCRYPT_KEY.txt, PASSWORDS.txt

 Question 4: SUBJECT.TXT

 EVIDENCE.docx

READ THESE INSTRUCTIONS FIRST

Type in the EVIDENCE.docx document the following:

 Candidate details

 Programming language used

Answer all questions.

All tasks must be done in the computer laboratory. You are not allowed to bring in or
take out any pieces of work or materials on paper or electronic media or in any other
form.

All tasks and required evidence are numbered.

The number of marks is given in brackets [] at the end of each task.

Copy and paste required evidence of program listing and screenshots into the

EVIDENCE.docx document.

This question paper consists of 10 printed pages (inclusive of this page).

2

1. Four stories are given in four data files: AIRCON.txt, BLIND.txt, COMP.txt,

EMPEROR.txt. The task is to find the frequency of alphabets used in the stories.

Task 1.1

Count the alphabets in each story and display the frequency of each alphabet in a table form.
Do not distinguish between upper and lower cases. Do not count non-alphabets. Frequency
should be displayed in descending order. Display alphabets with same frequency in ascending
order.
Sample output:
 Alphabet Frequency

 e 20

 t 14

 a 12

 i 12

 o 10

 u 6

 g 3

 j 3

 z 1

Evidence 1: Your program code for task 1.1. [9]

Evidence 2: Screenshot of running AIRCON.txt data file. [1]

Task 1.2

Amend your program code to display alphabets and frequencies in all four files in a table
form, with alphabets in first column and frequencies of alphabets in subsequent columns.

Display in alphabetical order as shown in following sample output:
Alphabet AIRCON.txt BLIND.txt COMP.txt EMPEROR.txt

a 115 471 604 490

b 25 87 111 56

c 46 117 230 107

⁞ ⁞ ⁞ ⁞ ⁞

⁞ ⁞ ⁞ ⁞ ⁞

x 3 6 9 0

y 38 121 128 130

z 2 3 4 4

Evidence 3: Your amended program code for task 1.2. [8]

Evidence 4: Screenshot of running your program code. [1]

a and i have same frequency of 12,

display a before i, since a comes before i.

g and j have same frequency of 3,

display g before j, since g comes before j.

3

2. Write a program to encrypt and decrypt user passwords.

Task 2.1

A set of encryption key is given in the data file ENCRYPT_KEY.txt. The encryption key will

map each alphabet and number according to the table below.

a → m m → q y → c

b → h n → s z → a

c → t o → l 0 → 7

d → f p → n 1 → 3

e → g q → i 2 → 8

f → k r → u 3 → 9

g → b s → o 4 → 5

h → p t → x 5 → 6

i → j u → z 6 → 0

j → w v → y 7 → 1

k → e w → v 8 → 4

l → r x → d 9 → 2

For example, a is mapped to m, b mapped to h, m mapped to q, 9 mapped to 2, etc.

The mapping is case-sensitive for alphabets.

Therefore a password WhizKid123 will be encrypted to VpjaEjf389.

Conversely, decryption works in the opposite way. Hence the password VpjaEjf389 will be

decrypted to WhizKid123.

There is no mapping for symbols. Some examples of symbols are !, @, #, $, %, ^.

Hence, a password Extr@123 will be encrypted to Gdxu@389, where the symbol remains the

same.

Copy and paste the encryption key (from data file ENCRYPT_KEY.txt) into your program

code and make use of it to write a program that

 Allows a user to select option to encrypt or decrypt a user password

 Gets user input of the password,

 Encrypts (or decrypts) the password according to user’s option,

 Displays the encrypted or decrypted password

Evidence 5: Your program code for task 2.1. [8]

4

Evidence 6: Screenshot of running program by encrypting WhizKid123 and decrypting

XgteV^cg84. [1]

Task 2.2

Amend your program code into a function that accepts two parameters – "password" and

"encrypt", and returns the encrypted or decrypted password.

FUNCTION Cryptograph(password:STRING, encrypt:BOOLEAN):RETURN STRING

Evidence 7: Your program code for task 2.2. [4]

Task 2.3

Write program code that makes use of the function Cryptograph from task 2.2 that reads all

the passwords in data file PASSWORDS.txt, encrypts and writes them into another file

CONVERTED.txt.

Sample input file:

Sample output file:

Evidence 8: Program code for task 2.3. [3]

Evidence 9: Screenshot of output file CONVERTED.txt. [1]

Encrypt and

write

WhizKid123

Extr@123

VpjaEjf389

Gdxu@389

5

3. Tic-tac-toe is a game in which two players take turns marking X and O in the spaces

in a 3×3 grid. The player who succeeds in placing three of their marks in a horizontal,

vertical, or diagonal row wins the game.

For example, player who marks X wins this game.

X O

X X X

O O

The task is to write program code for a tic-tac-toe game for two human players.

Task 3.1

Decide on the design to be used for:

 the data structure to represent the 3x3 grid, using the identifier board

 the contents of the marks (X, O and blank) in the spaces

 how user input (X or O) in the spaces

Evidence 10: Your program design. Include program code for board. [4]

Task 3.2

Write a function displayBoard that will display the game board clearly to the

players. You should use the board as a parameter in displayBoard.

Write another function displayInstructions to inform players on how to

input X and O in the spaces on the game board.

Evidence 11: Your functions displayBoard and displayInstructions. [4]

Task 3.3

Write a function getPlayerMove to get players to make their move (by marking

X or O) on the board. You should include validation on user input and check that

the space is not already occupied. Use board as a parameter. You may include

any other suitable parameters.

6

Evidence 12: Your function getPlayerMove. [5]

Task 3.4

Write a function checkWin that checks all the conditions for winning a game and

returns True if a player has won the game, otherwise return False. Use board as

a parameter. You may include any other suitable parameters.

Evidence 13: Your function checkWin. [5]

Task 3.5

Write a main function that makes use of the identifiers and functions from task

3.1 to task 3.4 and allows two human players to play a game of tic-tac-toe.

The main function should include the following:

 give instructions to players on how to input X or O

 ask whether player 1 or player 2 starts first move

 ensure players 1 and 2 take turns to make their move

 display the game board after every move made by a player

 check for winner

 display message on which player has won the game or whether the game

ends in a draw

Evidence 14: Your main function. [8]

Evidence 15: Run your main function and produce screenshots of three games

where player 1 wins one game, player 2 wins another game, and a drawn game.

 [3]

7

4. A college uses a binary tree structure to store its subjects offered to students.

The program will use a user-defined type Node for each node defined as follows:

Identifier Data type Description

Subject STRING The node’s value for subject

offered

LeftPtr INTEGER The left pointer for the node

RightPtr INTEGER The right pointer for the node

A linked list is maintained of all unused nodes which do not form part of the tree.

The first available node which is used for a new item is indicated by

NextFreePosition. Items in the unused list are linked using their left pointers.

The binary tree and linked list are implemented using variables as follows:

Identifier Data type Description

SubjectTree ARRAY[30] of

Node

The tree data

Root INTEGER Index position of the root node

NextFreePosition INTEGER Index for the next unused node

8

The diagram shows the binary tree and linked list after five subjects have been added.

1 2 Computing 3

Task 4.1

Write the program code to declare all the required variables and create the initial

linked list which contains all 30 nodes.

Add statement(s) to initialise the empty tree.

Evidence 16: Your program code for task 4.1. [8]

2 0 Biology 4 3 5 Physics 0

5 0 Mathematics 0 4 0 Chemistry 0

6 7 0

7 8 0

29 30 0

30 0 0

Root: 1

NextFreePosition: 6

............

9

The following incomplete pseudocode inserts a data value into the binary tree

structure.

PROCEDURE InsertBinaryTree(NewItem)

... ...

 IF tree is empty

 THEN

 ELSE

 //traverse the tree to find the insert position

 LastMove = 'X'

 REPEAT

 PreviousPtr ← CurrentPtr

 IF NewItem < CurrentPtr item

 THEN

 //move left

 CurrentPtr ← CurrentPtr's left

pointer

 LastMove = 'Left'

 ELSE

 //move right

 CurrentPtr ← CurrentPtr's right

pointer

 LastMove = 'Right'

 ENDIF

 UNTIL CurrentPtr = NULL

ENDIF

IF LastMove = 'Left'

... ...

ELSE IF LastMove = 'Right'

... ...

ENDIF

... ...

END PROCEDURE

Task 4.2

Complete the pseudocode and write a module AddSubject to add a subject into

the binary tree.

Evidence 17: Your AddSubject program code. [7]

10

Task 4.3

Write a module Display to display the value of Root, the value of

NextFreePosition and the contents of SubjectTree in index order.

Evidence 18: Your Display program code. [4]

Task 4.4

Write a module BuildTree to construct a binary tree using the data provided in the

data file SUBJECT.TXT. Read in all the data from the data file and use the

AddSubject module.

Evidence 19: Your BuildTree program code. [2]

Evidence 20: Run your program and produce screenshot of contents of binary tree.

 [1]

Deleting a node from a tree may change the structure of the tree. To simplify the

deletion process, label a node as “deleted” but do not remove the node from the

tree structure. After that, regenerate the entire tree structure.

Task 4.5

Write a module LabelDelete that labels a node as “deleted” but do not remove

the node from the tree structure.

Evidence 21: Your LabelDelete program code. [6]

Task 4.6

Write program code to regenerate the entire binary tree.

Evidence 22: Your program code to regenerate the binary tree. [6]

Evidence 23: Display a screenshot of the regenerated binary tree after deleting

“Chemistry” and “History”. [1]

END OF PAPER

