
 Page 1

Candidate Name: _____________________________ CT Group: _____

 Index no. ______

PIONEER JUNIOR COLLEGE
JC 2 PRELIMINARY EXAMINATION

COMPUTING H2 9597/01

Paper 1 15 Sep 2015

Time: 1400 - 1715 3 hours 15 min

Additional Materials: Removable storage device

 Electronic version of Rainfall_mth.csv data file

 Electronic version of Rainfall_day.csv data file

 Electronic version of Number.txt data file

 Electronic version of Story.txt data file

 Electronic version of Infix.txt data file

 Electronic version of EVIDENCE.docx file

READ THESE INSTRUCTIONS FIRST

Type in the EVIDENCE.docx document the following:

 Candidate details

 Programming language used

Answer all questions.

All tasks must be done in the computer laboratory. You are not allowed to bring in or take out
any pieces of work or materials on paper or electronic media or in any other form.

All tasks and required evidence are numbered.

The number of marks is given in brackets [] at the end of each task.

Copy and paste required evidence of program listing and screen shots into the

EVIDENCE.docx document.

This question paper consists of 10 printed pages (inclusive of this page).

 Page 2

1. Rainfall_mth.csv is a file which contains monthly total rainfall (in millimetres), for years

1984 to 2014. The format of the record is “[Year] M [Month] , [rainfall in millimetres]”.
Three sample records are:

 “1984M01, 251.2”, which means total rainfall for January 1984 is 251.2;

 “1999M07, 225.4”, which means total rainfall for July 1999 is 225.4;

 “2014M11, 250.8”, which means total rainfall for November 2014 is 250.8.

The total annual rainfall for a particular year can be calculated by adding the monthly total
rainfall for the twelve months.

Task 1.1
Write program code to find total annual rainfall from 1984 to 2014 and display in a table with
a heading and borders as follows:

Year Total Annual Rainfall (millimetres in 1 d.p.)

1984 2686.7

1985 1483.9

1986 2536.1

...

...

...

2014 1538.1

Evidence 1: The program code. [7]

Evidence 2: Screenshot to display total annual rainfall. [1]

Rainfall_day.csv is another file which contains number of rainy days in a month, for

years 2009 to 2014. The format of the record is “[Year] M [Month] , [number of days]”.
Three sample record are:

 “2009M03, 19”, which means there are 19 rainy days in March 2009;

 “2011M05, 15”, which means there are 15 rainy days in May 2011;

 “2014M09, 9”, which means there are 9 rainy days in September 2014.

The average rainfall for a rainy day for a particular year can be calculated by dividing the total
annual rainfall by the total number of rainy days in a year.

Task 1.2
Amend your program code using the following specifications:

 Allow user to input a year from 2009 to 2014

 Output error message if input is outside these years – 2009 to 2014

 Calculate the average rainfall for a rainy day for that year

 Output the result

Evidence 3: Your amended program code. [5]

Evidence 4: Screenshots that show 2 test cases from running Task 1.2. [2]

 Page 3

2. Quicksort is a sorting algorithm that employs a divide-and-conquer strategy.

Here is a high-level description of Quicksort applied to an array A[0 : n – 1]:
1. Select an element from A[0 : n – 1] to be the pivot.
2. Rearrange the elements of A to partition A into a left subarray and a right subarray,

such that no element in the left subarray is larger than the pivot and no element in the
right subarray is smaller than the pivot.

3. Recursively sort the left and the right subarrays.

Task 2.1
Study the identifier table and incomplete quicksort algorithm. The missing parts of the algorithm are
labelled A, B and C.

Variable Data Type Description

ThisArray ARRAY OF INTEGER Array containing the dataset

First INTEGER First index of array

Last INTEGER Last index of array

Temp INTEGER Temporary variable

Low INTEGER Index of array

High INTEGER Index of array

Pivot INTEGER Reference value in array

FUNCTION QuickSort(ThisArray, First, Last) RETURNS NULL

DECLARE Temp:INTEGER, Low:INTEGER, High:INTEGER, Pivot:INTEGER

 Low ← First

 High ← Last

A......... //Assign reference value

 WHILE Low <= High

 WHILE(ThisArray[Low] < Pivot) //Scan left

 B.........

 ENDWHILE

 WHILE(ThisArray[High] > Pivot) //Scan right

 High ← High – 1

ENDWHILE

IF Low <= High //Swapping

 Temp ← ThisArray[Low]

 ThisArray[Low] ← ThisArray[High]

 ThisArray[High] ← Temp;

 Low ← Low + 1 //Shift right by 1 element

 High ← High - 1 //Shift left by 1 element

 ENDIF

 ENDWHILE

IF First < High

 QuickSort(ThisArray, First, High)

 ENDIF

 If Low < Last

 C.........

 ENDIF

ENDFUNCTION

Evidence 5: What are the three missing lines of this pseudocode? [3]

 Page 4

Task 2.2

Write a program to implement the quicksort.

The program will:

 Call procedure InitialiseList.

 Use the function QuickSort to sort an array of integer

[435,646,344,54,23,98,789,212,847,201,733]. Copy and paste this array from

the file Number.txt into your program.

 Output the array before and after the quicksort algorithm is applied.

Evidence 6: Program code for Task 2.2. [7]

Evidence 7: Screenshot to show running of program code in Task 2.2. [1]

Task 2.3

Amend the program as follows:

The program must also output the number of function calls carried out.

Evidence 8: The amended program code. [3]

Task 2.4

By selecting different reference values (pivot) and input datasets, and making use of the

number of function calls, evaluate the efficiency of the algorithm.

Evidence 9: Evaluation of efficiency of quicksort algorithm with accompanying screenshots

(showing runs of function) for different reference values and input datasets. [4]

 Page 5

3. A program is to be written to find all the words in a piece of text and to print them in
alphabetical order, together with the number of times each word occurs. The data structure
used to hold this information will be a linked list, with each node holding a word, the
number of occurrence of that word, and a pointer to the node containing the next word in
alphabetical order.

The program will use nodes implemented as instances of the class ListNode. The class

ListNode has the following properties:

Class: ListNode

Properties

Identifier Data Type Description

Word STRING The node’s value for a word from the text

Count INTEGER The node's value for number of occurrences of the word

Pointer INTEGER The pointer for the node

A linked list is implemented as an instance of the class LinkedList. The class

LinkedList has the following properties and methods:

Class: LinkedList

Properties

Identifier Data Type Description

Node ARRAY[30]

of

ListNode

The linked list data structure – data values (Word &
Count) and pointers. Array index starts at 0. For testing
purposes, the dataset has a maximum of 30 nodes.

Start INTEGER Index position of the node at the start of the linked list

NextFree INTEGER Index position of the next unused node

Methods

Initialise PROCEDURE Sets all node data values to empty string (for Word) and 0
(for Count).
Set pointers to indicate all nodes are unused and linked.

Initialise values for Start and NextFree.

Update PROCEDURE Updates the linked list with a word read from the text

Display PROCEDURE Display the current state of array content and pointers in
table form.

IsEmpty FUNCTION

RETURNS

BOOLEAN

Test for empty linked list.

IsFull FUNCTION

RETURNS

BOOLEAN

Test for no unused nodes.

 Page 6

The diagram shows the linked list with:

 the text “mary had a little lamb” added

 the unused nodes linked together.

Task 3.1

Write the program code for the classes ListNode and LinkedList, including the

Initialise, Display, IsEmpty and IsFull method. The code should follow the

specification given. Do not write the Update procedure yet.

Evidence 10: Your program code for the ListNode and LinkedList classes. [12]

Task 3.2

Write code to create a LinkedList object and run Display procedure to show the

content of the object.

Evidence 11: Screenshot confirming all values after initialisation of the LinkedList. [3]

Task 3.3

Write code to implement for the LinkedList class the Update method that will update

the linked list with a word read from the text.

Evidence 12: Program code for Update procedure. [12]

Start

 a 1 1 had 1 2 lamb 1 3 little 1

4 0 mary 1 –1

NextFree

 6 7 8 29
……… 5

 –1

0 1 2 3 4

5 6 7 28 29

 Page 7

Task 3.4

Write code to use the Update procedure by reading in the text from the file Story.txt.

Evidence 13: Screenshot of state of array content and pointers by running Display

procedure. [4]

Task 3.5

Write a method Query inside LinkedList class that:

 takes a word input by user,

 check if the word exists in the linked list,

 output appropriate message with the number of occurrences, if word exists.

Evidence 14: Program code for Query method. [4]

Evidence 15: Screenshot from running the Query method for a word that exists and

another word that does not exist in the linked list. [2]

 Page 8

4. Implement a stack class using array using the following properties and methods:

Class: Stack

Properties

Identifier Data Type Description

Data ARRAY[x] of

STRING

x is the limit, which must be supplied when the object
is called

Limit INTEGER The maximum number of elements the stack can hold

Methods

Identifier Data Type Description

IsEmpty FUNCTION

RETURNS

BOOLEAN

Indicates whether any elements are stored in stack or
not

IsFull FUNCTION

RETURNS

BOOLEAN

Indicates whether stack is full or not

Push PROCEDURE Inserts data onto stack

Pop PROCEDURE Removes and returns the last inserted element from
the stack

Peek PROCEDURE Returns the last inserted element without removing it

Size PROCEDURE Returns the number of elements stored in stack

Display PROCEDURE Displays the content of the stack with top of stack
clearly indicated

Task 4.1

Write program code for the stack class with all the properties and methods above.

Evidence 16: Your program code. [12]

A stack can be used to evaluate an arithmetic expression. An arithmetic expression can

first be converted from infix notation to postfix notation, then the postfix notation can be

evaluated to get the value of the infix notation.

For example, the infix notation 5 * (6 + 2) - 12 / 4 can first be converted to postfix

notation 5 6 2 + * 12 4 / -, and then evaluated to 37 using a stack.

 Page 9

The following is an algorithm for converting infix notation to postfix notation:

1. Create an empty stack called opStack for keeping operators.

2. Scan the token list from left to right.

 If the token is an operand, append it to the end of the output list.

 If the token is a left parenthesis, push it on the opStack.

 If the token is an operator, *, /, +, or -, push it on the opStack. However, first

remove any operators already on the opStack that have higher or equal

precedence and append them to the output list.

 If the token is a right parenthesis, pop the opStack until the corresponding left

parenthesis is removed. Append each operator to the end of the output list.

When the input expression has been completely processed, check the opStack. Any

operators still on the stack can be removed and appended to the end of the output list.

Task 4.2

Write program code for the algorithm to convert infix notation to postfix notation using the

following specification:

FUNCTION infixToPostfix(infixexpression:STRING):STRING

Evidence 17: Your program code. [7]

 Page 10

The following algorithm can be used to evaluate postfix notation:

1. Create an empty stack called operandStack.

2. Scan the token list from left to right.

 If the token is an operand, convert it from a string to an integer and push the value onto the

operandStack.

 If the token is an operator, *, /, +, or -, it will need two operands. Pop the operandStack

twice. The first pop is the second operand and the second pop is the first operand. Perform

the arithmetic operation. Push the result back on the operandStack.

When the input expression has been completely processed, the result is on the stack. Pop the

operandStack and return the value.

Task 4.3

Write program code for the algorithm to evaluate postfix notation using the following

specification:

FUNCTION postfixEval(postfixexpression:STRING):FLOAT

Evidence 18: Your program code. [7]

Task 4.4

Write program code to read the infix expressions from the file Infix.txt and output its

postfix expressions and its evaluation.

Evidence 19: Your program code. [2]

Evidence 20: Screenshot of running your program code in Task 4.4. [2]

~ ~ ~ E N D O F P A P E R ~ ~ ~

