
Name: Index
Number:

 Class:

DUNMAN HIGH SCHOOL
Preliminary Examination
Year 6

COMPUTING 9597

(Higher 2)

Paper 1

31 August 2015

3 hours 15 minutes

Additional Materials: Data files and EVIDENCE.docx

READ THESE INSTRUCTIONS FIRST

Type in the EVIDENCE.docx document the following:

● Candidate details

● Programming language used

Answer all questions.

All tasks must be done in the computer laboratory. You are not allowed to bring in or take out any

pieces of work or materials on paper or electronic media or in any other form.

All tasks and required evidence are numbered. The marks is given in brackets [] at the end of each

task.

Copy and paste required evidence of program code and screen shots into EVIDENCE.docx.

At the end of the examination, print out and submit your EVIDENCE.docx.

Data files

Q1 – ELECTION.txt

Q2 – PARTICIPANTS.txt

Q3 – Nil

Q4 – Nil

1. The coming General Election will see 28481 voters in the MacPherson Single Member

 Constituency (SMC) voting for their Member of Parliament (MP). The data file

 ELECTION.txt contains the simulated voting results, with A, B, C and V representing

 votes for the political parties National Solidarity Party, People Action Party and Workers'

 Party, as well as void votes respectively.

Task 1.1
Determine the winner and the voting statistics (correct to 1 decimal place) for this SMC.

Your output should look like the following:

Sample output:

Results for the Electoral Division of MacPherson

PAP 58.7%

WP 37.5%

NSP 2.6%

Void 1.2%

Winner is PAP

Evidence 1

Program code. [7]

Evidence 2

Screenshot. [1]

Task 1.2

In the event of a tie, the parties tied will enter into a revoting exercise. For example, if

there is a tie between PAP and WP, return the message "Revote between PAP and

WP".

Write program code to generate a text file TIE.txt with approximately 3% void votes, 7%

votes for NSP and a tie between PAP and WP. Test your program with your generated

TIE.txt.

Evidence 3

Program code. [6]

Evidence 4

Screenshot. [1]

2. You are provided with the registration dates and email addresses of participants who

 registered for an event in the text file PARTICIPANTS.txt. Unfortunately, some

 participants registered more than once.

Task 2.1

Write program code to remove duplicate entries and generate the final participant list in

alphabetical email order. If a participant registered more than once, take the last registered

record as the final entry. Return also a count of duplicate entries removed.

Sample output:

ali@yahoo.com,03-05-2015

dave@savetheworld.org,05-05-2015

james007@bond.uk,07-05-2015

limahseng@gmail.com,01-05-2015

mary_ong@m1.com.sg,05-05-2015

zorro@outlook.com,30-04-2015

3 duplicate entries removed.

Evidence 5

Program code. [4]

Evidence 6

Screenshot. [1]

Task 2.2

Some email addresses may be entered wrongly. Using first principles, write a Boolean

function Valid_Email(email) to determine if an email address is valid. Design test

cases to thoroughly test the working of your function code.

Evidence 7

Program code. [6]

Evidence 8

Test data with purpose and corresponding screenshots. [4]

3. International Standard Book Number (ISBN) is a unique number assigned to each edition

 of a book. It has two formats: ISBN-10 and ISBN-13. The former is used before 1 Jan

 2007 and the latter after that. Examples of valid ISBNs are 020103803X and

 978-1-284-05591-7. The last digit is the check digit and is computed as follows:

 ISBN check digit (10 digits) - mod 11 algorithm

● Each digit starting from left to right is assigned a weight from 1 to 9. Each digit is

multiplied by its position weight. The sum of products modulo 11 gives a remainder

between 0 and 10. If the remainder is 10, the check digit is the roman numeral X,

else the check digit is the remainder.

● Example ISBN-10: 0-07-063546-3

● (0x1) + (0x2) + (7x3) + (0x4) + (6x5) + (3x6) + (5x7) + (4x8) + (6x9) = 190

● 190 mod 11 = 3

● Hence 3 is the check digit.

 ISBN check digit (13 digits) - mod 10 algorithm

● Each digit starting from the left to right is multiplied by 1 or 3 alternatively. The sum of

the products modulo 10 gives a remainder between 0 to 9. If the remainder is non-

zero, subtract this from 10 to get the check digit, else the check digit is 0.

● Example ISBN-13: 978-0-07-063546-3

1x9 + 3x7 + 1x8 + 3x0 + 1x0 + 3x7 + 1x0 + 3x6 + 1x3 + 3x5 + 1x4 + 3x6 = 117

● 117 mod 10 = 7

● 10 - 7 = 3

● Hence 3 is the check digit.

Task 3.1

Write a function ISBN_Check_Digit(isbn) which generates the check digit for a given

ISBN-10 or ISBN-13 number.

Evidence 9

Program code. [5]

Evidence 10

Screenshots (1 for ISBN-10 and 1 for ISBN-13) [2]

Task 3.2

Write a function Valid_ISBN(isbn) which calls your ISBN_Check_Digit(isbn)

function in Task 3.1 to determine if a given ISBN-10 or ISBN-13 number is valid.

Evidence 11

Program code. [4]

Evidence 12

Screenshots for appropriately generated ISBN-10 and ISBN-13 numbers. [2]

An ISBN-10 number can be converted to its ISBN-13 equivalent by prefixing '978' to the

ISBN-10 number and then calculating the check digit using the ISBN-13 algorithm.

Task 3.3

Write a function ISBN10_To_ISBN13(isbn) to convert an ISBN-10 number to its ISBN-

13 equivalent.

Evidence 13

Program code. [3]

Evidence 14

Screenshot of output for ISBN-10 number 1904467520. [1]

Task 3.4

Write a function ISBN13_To_ISBN10(isbn) to convert an ISBN-13 number to its ISBN-

10 equivalent.

Evidence 15
Program code. [4]

Evidence 16
Screenshot of output for ISBN-13 number 9780748740468. [1]

A small library wishes to store its book collection details using a random file organisation.
It currently holds 200 books but wishes to expand its collection by about 10% every year.
To resolve collisions, it decides to use double hashing which minimises clustering. For a
start, assume that this file organisation will be maintained for 3 years.

Task 3.5

Devise and implement a suitable double hashing strategy Hash_Key(isbn). Annotate

your strategy using program comments.

Evidence 17

Program code with comments. [5]

Task 3.6
Write program code to generate an appropriate number of ISBNs to the random text file

LIBRARY.txt which will cater to the library's collection growth over 3 years. Include

Insert_Book(isbn) and Lookup_Book(isbn) functions to insert a book and lookup a

book respectively.

Evidence 18

Program code. [8]

Evidence 19

Screenshots showing the insertion and lookup of one non-collided record and one collided
record. [4]

Evidence 20

Separate printout of LIBRARY.txt after insertion of all generated records. [2]

4. You are tasked to maintain a binary search tree for optimal search efficiency. Each node

 of the binary search tree contains a unique identifier (productid) and a reference to a

 linked list which holds individual order details for that product. For simplicity, orderid will

 suffice.

Task 4.1

Using object-oriented programming, implement the above binary search tree with its
associated class methods (insert(), search() and inorder()).

Evidence 21

Program code for binary search tree with 8 products inserted, 3 of which has at least 2
orders. [8]

Evidence 22
Screenshot of output of inorder traversal (product and order information). [2]

Task 4.2

Write a support class method most_popular() to determine the best selling product(s).

Evidence 23
Program code. [4]

Evidence 24

Screenshot. [1]

Task 4.3

A product is no longer available. Write a class method delete() to remove this node

from the binary search tree, accounting for all possible cases.

Evidence 25
Program code. [5]

Evidence 26
Screenshots. [3]

Task 4.4

After a series of insertion and deletion, the binary search tree may become unbalanced
and this requires reorganisation to maintain optimal search efficiency. Write functions

is_balanced() to test if a binary search tree is balanced, and reorg() to reorganise

an unbalanced binary search tree. Include appropriate annotation.

Evidence 27
Program code. [7]

