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Data 

speed of light in free space, c  3.00 × 108 m s1 

permeability of free space, 0  4  107 H m1 

permittivity of free space, 0  8.85 × 1012 F m1 

  (1/(36)) × 109 F m1 

elementary charge, e  1.60 × 1019 C 

the Planck constant, h  6.63 × 1034 J s 

unified atomic mass constant, u  1.66 × 1027 kg 

rest mass of electron, me  9.11 × 1031 kg 

rest mass of proton, mp  1.67 × 1027 kg 

molar gas constant, R  8.31 J K1 mol1 

the Avogadro constant, NA  6.02 × 1023 mol1 

the Boltzmann constant, k  1.38 × 1023 J K1 

gravitational constant, G  6.67 × 1011 N m2 kg2 

acceleration of free fall, g  9.81 m s2 
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FORMULAE 

Lorentz factor   = (1 – (v/c)2)1/2 

length contraction L  = L0 / 

time dilation T  = T0 

Lorentz transformation equations (1 dimension) x  =  (x – vt) 

 t  =  (t – vx/c2) 

mass-energy equivalence E  = m0
 c2 

 = 2 2 2
0( ) ( )pc m c  

Wien’s displacement law pT  = 2.898 x 103 m K 

Compton shift formula   =  1 cos
h

mc
  

population distribution of atoms with energy Ex Nx  = N0 exp((Ex  E0)/kT)  

time-independent Schrodinger equation E  =
2 2

22

d
U

m dx

 
   

 

h
 

allowed energy states for a particle in a box En  = (n2h2)/(8mL2) 

normalised wave function for particle in a box   = (2/L)1/2 sin(nx/L) 

transmission coefficient T  = exp(2kd) 

 where k  =  2

2

8 m U E

h

 
 

Drude model of electrical resistivity   =
2

2 em v

ne 
 

Fermi energy for metals EF  =
2 32 3

8

h n

m 
 
 
 

 

density of energy states for electrons in a metal (E)  =
 3 2

3

4 2m
E

h


 

Fermi function f(E)  = 1/(1 + exp((E  EF)/kT)) 

refractive index n  = v1/v2 

phase difference of circularly polarised light 
2




  =
d

n

  

Brewster’s angle tan B  = n2/n1 

attenuation of light intensity I  = I0 exp(x) 
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2 (a) Both photoelectric effect and Compton scattering can be explained by the photon theory 
of light. In photoelectric effect, electrons are ejected from a metal surface through the 
absorption of photons. 

     
  (i) Using the Compton-shift formula, explain why it is not possible to eject 

electrons from a metal surface through Compton scattering of ultraviolet 
radiation. 

 
 
[2] 

     
  (ii) For Compton scattering, describe the feature of the experimental results 

that could not be explained by the classical wave theory of electromagnetic 
radiation. 

 
 
[2] 

     
  (iii) X-rays having energy of 300 keV undergo Compton scattering from a target. 

The scattered rays are detected at 37.0  relative to the incident rays.  
Calculate 

 

     
   1. the Compton shift at this angle, [2] 
     
   2. the energy of the scattered X-ray in keV, [3] 
     
   3. the energy of the recoiling electron in keV. [1] 
     
 (b) (i) Explain what is meant by an ideal black body.  [1] 
     
  (ii) The classical model of black body radiation given by the Rayleigh-Jeans law 

has major flaws. Identify one such flaw. 
 
[1] 

     
  (iii) Describe the assumptions made by Planck to address the flaw you identified 

in (ii). 
 
[2] 

     
  (iv) The radius of the Sun is 86.96 10 m and its total power output is 263.85 10 W.  
     
   1. Assuming the Sun’s surface behaves like a black body, calculate the 

temperature of its surface. 
 
[2] 

     
   2. Calculate the wavelength at which the energy radiated by the Sun is 

maximum. 
 
[1] 

     
   (Stefan-Boltzmann constant 85.67 10    W m-2 K-4)  
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3 (a) (i) Explain what is meant by the resolving power of optical instruments. [1] 
     
  (ii) Explain how Rayleigh criterion can be used to determine whether two 

images are resolved. 
 
[2] 

     
  (iii) Sketch well labelled diagrams to differentiate the images seen when two 

point light sources are unresolved, just resolved and fully resolved. 
 
[3] 

     
 (b) A Newtonian telescope with a large aperture (primary mirror) allows an observer to see 

dimmer objects by collecting more light than the naked eye can.  
 
In Fig. 3.1, the primary mirror reflects the incoming light onto a secondary mirror, which 
is then responsible for focusing this light to produce a clear image of the object. 

     
   

 
Fig. 3.1 

 

     
  (i) The primary mirror of the telescope has a diameter of 0.25 m. Estimate the 

angle subtended by two stars that are just resolved by the telescope.  
 
[2] 

     
  (ii) If those two stars are known to be 131.6 10  m  apart, how far away are they 

from Earth? 
 
[1] 

     
 (c) (i) Explain how transmission electron microscopes (TEM) can achieve higher 

resolutions than normal optical microscopes. 
[2] 
 

     
  (ii) Explain how the resolution of TEM can be increased.  [2] 
     
  (iii) The typical accelerating voltage in a TEM is 100 kV. Calculate the de 

Broglie’s wavelength of the electron. 
 
[2] 

 
  

Primary mirror 

Secondary 
mirror 

incoming light 

Focal  point 

Instrument
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4 (a) The time-independent Schrodinger's Equation for a quantum particle of mass m is   

     
2 2

22

d
V x x E x

m dx
 

 
   
 


, 

where  x  is the wave function,  V x  is the potential energy function and E is the 

total energy of the quantum particle. 
 

  Explain the term wave function. [1] 
    
 (b) A particle moving along the xaxis is trapped by two hard walls located at x L   and 

x L  as shown in Fig. 4.1.  
   

 
 

  Mathematically, the situation can be described with the following potential energy:  
  

  (i) Given that 

 1

2
sin

mE
x R x 

 
  

  
, 

where R and  are constants, show that  1 x  is a solution of the 

Schrodinger's Equation in the interval L x L   . 

 
 
 
 
 
[3] 

     
  (ii) Write down the wave function, 2 ( )x , in the region x L   and x L  [1] 

     
  (iii) Deduce the value of R. [4] 
     
  (iv) By considering the boundary condition at x L   and x L , derive the 

expression for the energy of the particle. 
 
[4] 

     
 (c) A particle undergoes simple harmonic oscillation with angular frequency . The energy 

of the nth-stationary state is nE . 
    
  (i) State the zero-point energy 1E  of this particle. [1] 

     
  (ii) Determine the quantum number n such that the difference in energy 

between this level and the next higher level is less than 1 % of nE . 
 
[3] 

  

x0L L

Fig. 4.1

x0L L

U(x) 

Fig. 4.2
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5 (a) The Drude model of electrical conduction has a bearing on Ohm’s Law and shows that 
resistivity can be related to the motion of free electrons in metals. 

     
  (i) The current density J in a conductor is the current per unit cross-sectional 

area. Show that  
 

J = nev, 
 
where n is the number density of free electrons, v is the drift velocity and e is 
the elementary charge. 

 
 
 
 
 
 
[3] 

     
  (ii) If a potential difference V is applied across a metal wire of length L and 

cross-sectional area A, show that an alternative representation of current 
density is  

V
J =

ρL
, 

 
where   is the resistivity of the conductor. 

 
 
 
 
 
 

[2] 
    
 (b) The resistivity  of zinc varies with temperature T according to 

 

0 0[1 ( )]T T     , 

 
where 0  is the resistivity of zinc at 20 C and  is the temperature coefficient of zinc. 

 
molar mass of zinc = 65.37 g mol1 
density of zinc = 7.133 g cm3 
resistivity of zinc at 20C = 5.920 x 108  m 
temperature coefficient of zinc = 3.70 x 10-3 C1 

    
  (i) A potential difference of 0.0320 V is applied across the ends of a zinc wire of 

length 10.0 cm. The temperature of the wire is 55.0 C. Each zinc atom 
contributes two free electrons for conduction.  
 
Calculate the resistivity of zinc at 55.0 C. 

[1] 

     
  (ii) Calculate the drift velocity of the free electrons in the zinc wire at 55.0 C. [3] 
     
 (c) Use the Drude model to show that the drift velocity v of a free electron in a cylindrical 

wire along which an electric field E has been applied is given by  
 



12 e

Ee
v =

kTm
, 

 
where e is the elementary charge,  is the mean free path of the free electrons, k is the 
Boltzmann constant, T is the thermodynamic temperature of the wire and me is the mass 
of electron.                [5] 

    
 (d) Aluminium, which is trivalent, has a density of 2700 kg m-3. One mole of aluminium has 

a mass of 0.027 kg.  
 
Calculate the Fermi energy of aluminium at a temperature of absolute zero. Leave your 
answer in electron-volt (eV).              [3] 
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6 (a) (i) State Malus’ law and explain the meaning of the symbols used. [2] 
     
  (ii) Explain why, in reality, the intensity of the transmitted light is lower than 

predicted by Malus’ law. 
 
[1] 

     
  (iii) An unpolarised light of intensity I0 is incident on an ideal polariser. Deduce 

the intensity of the transmitted light in terms of I0. 
 
[2] 

     
 (b) A horizontal beam of light has an unpolarised component of intensity I0 and a polarised 

component of intensity Ip. The plane of polarisation of the polarised component is 
oriented at an angle of  with respect to the vertical. The data in Fig. 6.1 give the 
intensity Itransmitted measured through a polariser with an orientation  with respect to the 
vertical. 
 

   / ° Itransmitted/ W m2   / ° Itransmitted/ W m2  

  0 18.4  100 8.6  

  10 21.4  110 6.3  

  20 23.7  120 5.2  

  30 24.8  130 5.2  

  40 24.8  140 6.3  

  50 23.7  150 8.6  

  60 21.4  160 11.6  

  70 18.4  170 15.0  

  80 15.0  180 18.4  

  90 11.6     

        
  Fig. 6.1  
     
  (i) Plot the graph of Itransmitted against  on a graph paper. [2] 
     
  (ii) From the graph, determine  
     
   1. the angle  of the polarised light, [1] 
     
   2. the intensity I0 of the unpolarised component, and [2] 
     
   3. the intensity Ip of the polarised component? [2] 
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