The Truncus
Wednesday, 25 April $2018 \quad 5: 44 \mathrm{pm}$

Work to be completed at the end of teaching:
4B: The truncus
151 1abcefgh, 2abcefgh, Sac \qquad

RECAP
We have been working on all the work for Functions and Relations.
Now we look at some of the most used Functions in Mathematical Methods.

- Rectangular Hyperbola

1. The Truncus

- The Square Root Graph
- Circles

This lesson will be used to look at ...
The Truncus
Always nice to start with what it looks like yes?

Base Equation: \square

$$
\begin{aligned}
& y=\frac{X}{0^{2}} \\
& 0=\frac{1}{x^{2}} \quad x^{2}=\frac{1}{6}
\end{aligned}
$$

Question: Why are there no negative y values?

Important information about the graph:

Asymptotes: $x=0$ $y=0$
Helpful points:
• $(1,1)$
- $(-1,1)$

Plotting points on the graph will help the examiner know that you have
understood transformations and have calculated things correctly.

$$
\begin{array}{ll}
\text { Domain and Range: } & \left.x \in \mathbb{R}^{\text {组 }}\right\} \\
\text { Domain: } \mathbb{R}\{0\} & f(x) \in \mathbb{R}^{+}
\end{array}
$$

Shape
It is important that you memorise the shape.
This is the base shape from which all other trunci are born.
Note: The plural of truncus is trunci
采

As with all functions, the base truncus can be transformed.
It is vital you understand what the form of a transformed truncus can look like
Examples of how functions can be made to look:
(1)

(2) $y=\frac{3}{x^{2}} 4^{\frac{3}{x^{2}}}$
(3)

$$
\begin{aligned}
& y=\frac{1}{(x-3)^{2}} \\
& \& \text { Translation }
\end{aligned}
$$ $\longrightarrow 3$

(s)

$$
y=\frac{4}{\left(\frac{4}{(2 x+3)^{2}}-3\right.}
$$

(6)

$$
y=\Theta_{\frac{2}{(x-1)^{2}}}-\frac{1}{2}
$$

(ㄱ)

$$
y=\frac{3}{(1-x)^{2}}+2
$$

As will all functions, you need to be able to look at them and understand what each number stands for and how they can be applied as a transformation of a truncus.
RECAP: Order of Transformations
Remember ... Unless they give you an order of transformations ... you must use Dr T
Not Mr T ... like from the 1980's TV show called The A Team.
Dr T stands for:

- Reflections
T
- Translations
- Translations

Always identify which are which in the equation and then construct them in that order!

Reflections of Trunci

Let's look at what happens with a reflection in the x-and y-axis
Reflection in the x-axis
Important information about the graph:

Asymptotes $x=0$
 $x=0$ $y=0$
 - $(1,-1)$

Plotting points on the graph will help the examiner know that you have
understood transformations and have calculated things correctly.

Dilation of the Trunci
Again, we need to remember that dilation can take place away from the x-axis and away from the y-axis,

Dilation factor 'a' from the y-axis

Important information

Dilation: Factor $\frac{1}{3}$ from y-axis
Asymptotes:
$\begin{aligned} x & =0 \\ y & =0\end{aligned}$
Helpful points
Helpful poi

- $\left(1, \frac{1}{9}\right)$
-
- $\left(-1, \frac{1}{9}\right)$

Important information

$\|$| Asymptotes: |
| ---: |
| $x=0$ |
| $y=0$ |

Helpful points:
$\bullet(1,3)$
$\bullet(-1,3)$

Domain and Range:

- Domain: $\mathbb{R} \backslash\{0\}$
- Range: \mathbb{R}^{+}or $(0, \infty)$

This graph has been stretched by a factor of 3 away from the x-axis.
It is vital that you know which number relates to a dilation from the x-axis.

Side note: It's important to note the difference between the graph of $y=\frac{1}{3 x^{2}}$ and $y=\frac{1}{(3 x)^{2}}$

Domain and Range:
 - Domain: $\mathbb{R} \backslash\{0\}$

- Range: \mathbb{R}^{+}or $(0, \infty)$

This graph has been stretched by a factor of $\frac{1}{3}$ away from the x-axis.
It is vital that you know which number relates to a dilation from the x-axis.
You must also know that for many graphs, a dilation from the x-axis can also be described as a dilation from the y-axis

Translations for Trunci
Finally, we can move the truncus both vertically and horizontally in the same way we can move other graphs.
Translation parallel to the x-axis

Domain and Range:
 - Domain: $\mathbb{R} \backslash\{-3\}$

- Range: \mathbb{R}^{+}or $(0, \infty)$

This graph has been moved 3 units in the negative
direction parallel to the x-axis.

$$
\begin{aligned}
y & =\frac{1}{(x+3)^{2}} \\
y & =\frac{1}{(3)^{2}} \\
& =-\frac{1}{9}
\end{aligned}
$$

Translation parallel to the y-axis

Important information	2	
Asymptotes:	\downarrow	
$\binom{x=0}{y=-2}$	$(1,1)$	$(1,-1)$
Helpful points: - $(-1,-1)$ - $(1,-1)$	$(-1,1)$	$(-1,-1)$

Domain and Range:

- Domain: $\mathbb{R} \backslash\{0\}$
- Range: $(-2, \infty)$

This graph has been moved 2 units in the negative
direction parallel to the y-axis,

$$
\begin{aligned}
& y=\frac{1}{x^{2}}-2 \quad x^{2}=\frac{1}{2} \\
& 0=\frac{1}{x^{2}}-2 \quad x= \pm \sqrt{\frac{1}{2}} \\
& 2=\frac{1}{x^{2}} \quad= \pm \frac{\sqrt{1}}{\sqrt{2}} \\
& = \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

$-1+2$	$=\frac{1}{x^{2}}$
	$= \pm \frac{1}{\sqrt{2}}$
$\sqrt{2}$	

Combining Transformations of Rectangular Hyperbolas
Let's ramp up the complexity just alittle bit!
Let's consider the following function.

Compare this with:

$$
y=\frac{1}{\left(x+\frac{3}{2}\right)^{2}}-3
$$

It's the same graph as above!
Trying to have the co-efficient of x as 1 makes the
transformations easier to identify!
From the above equation it's much easier to see:
Transformations:
Dilation
None
Reflection
None
Translations:
Translations:
Parallel to x-axis: $-\frac{3}{2}$
Parallel to y-axis: -3
Remember, it's always important to show any crossing
points on the x-and y-axes,

