Surface Area (Pyramids and Cones)

Thursday, 15 March 2018 3:48 PM

By the end of teaching you are expected to complete the following questions:

RECAP:

We have so far looked at finding the surface areas of the following shapes:

- Prisms

> - Trapezoidal

- Triangular

We have found that there are certain shapes which are more commonly used

- Cylinders

There are many, many more shapes which we can find the surface area of.
Today we are going to look at:

- Pyramids
- Cones

Important Formulae

$$
\text { Surface Area of a Cylinder: } 2 \pi r^{2}+2 \pi r h
$$

$$
\begin{aligned}
& \pi r^{2}+\pi r^{2}+2 \pi r h \\
& 2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

Surface area of a Prism $=$ Sum ϕf the area of each surface

Surface area of a Pyramid
There are lots different pyramids. We tend to deal with two in Mathematics:

- Square based
- Triangular based

In both cases, you find the area of the base and then the area of each of the sides.
You need to be careful as they can try and trikyoul
They can give you the slant height or the side length.
This makes all the difference!

Tofind the surface area you break the shape into: - Base
find the surface area you break the shape into: Square base tingle

- One Triangular face (which you will multiply by 3 or 4 depending on how many it has!)
Triangular

$$
\begin{aligned}
& \begin{array}{c}
\text { Triangular } \\
\text { Base }
\end{array} \\
& \text { The areas of an } 4 \text { faces } \\
& \text { will genera ally be the same! } \\
& \text { Find the area of one (A) }
\end{aligned}
$$

Example: Find the surface are of the square based pyramid shown below:

Finding the surface area of a cone
I always think of ice-cream when I see the word cone!
But ... this is great as there is a formula (or two) we can use to find the area of a cone:

Example: Find the surface area of the following cone

The great thing with most of
these questions is that they con
be dare on a cal culator

$$
\begin{aligned}
S A & =\pi \cdot r\left(r+\sqrt{h^{2}+r^{2}}\right) \\
& =\pi \cdot 2\left(2+\sqrt{S^{2}+2^{2}}\right) \\
& =2 \pi(2+\sqrt{2 S+4}) \\
& =2 \pi(2+\sqrt{29}) \rightarrow C A S=
\end{aligned}
$$

$$
\begin{aligned}
& r=2 \mathrm{~cm} \\
& h=5 \mathrm{~cm}
\end{aligned}
$$

Composite solids:
Composite solids are shapes which are made up of one (or more) different shapes.
These shapes will generally be ones which can have their individual surface areas worked out and then added together.

Example: Find the surface area of the following composite shape

