Surface Area - Prisms and Cylinders

Tuesday, 13 March $2018 \quad 8: 39 \mathrm{pm}$
. By the end of the lesson I am asking for the following work to be completed: \downarrow

RECAP:

Measurement is a really important topic.
We have missed three important sections of this chapter which I will show a quick recap below.

1. Review of Length
2. Pythagoras' Theorem

Review of Length

Converting between metric units of lengthi.e. km to m to cm to mm

Perimeter

Circumference of a Circle

$$
\begin{aligned}
& P=2 r=\left(\frac{\theta}{360^{\circ}}\right) \\
& \times 2 \pi r \\
& \text { Fraction of }
\end{aligned}
$$

Review of Pythagoras' Theorems
I feel like we have done this to death!
However, we need to know that we can use Pythagoras' Theorem to find the Areas of Triangles
As this whole chapter is about finding the areas of prisms and cylinders, here is a quick recap for Pythagoras' Theorem
$c^{2}=a^{2}+b^{2}$
(a) $a^{2}+c^{2}$
Perimeter
$?$

$$
\begin{array}{ll}
x^{2}=5^{2}+12^{2} \\
x^{2}=25+144 \\
x^{2}=169
\end{array} \quad x=13 \text { ar }
$$

$$
x= \pm \sqrt{169}
$$

$$
\begin{array}{rlrl}
x= \pm & p & =5+12+13 \\
& =5+25 \\
& =30 \text { units } \\
C^{2}=a^{2}+b^{2} & & = \\
s^{2}=4^{2}+?^{2} & & ?^{2}=25-16 \quad ?= \pm \sqrt{9} \quad ?=3 \mathrm{unl} 1 \mathrm{~s} \\
25=6+?^{2} & ?^{2}=9 & = \pm 2
\end{array}
$$

Area: Consolidating
Conversion of units of area ie. km^{2} to \boldsymbol{m}^{2} to cm^{2} to mm^{2}

$$
\mathrm{km} \xrightarrow{x 1000} \mathrm{~m} \xrightarrow{\times 100} \mathrm{~cm} \xrightarrow{\times 10} \mathrm{~mm} \quad(1 \mathrm{dis})
$$

$\times 100 \times 100$

```
I curent
```

$\mathrm{Km} \longrightarrow \mathrm{m} \longrightarrow \mathrm{CM} \longrightarrow \mathrm{Mm}$
(Iain)
$\times 100 \times 100$

Areas of standard shapes

1. Square
2. Rectangle
3. Triangle

$A=b \times h$

$A=b \times h$

$A=112 b h$

4. Circle

Surface Area of Prisms and Cylinders
Firstly ... what is a prism?
It's a shape which, when oriented in a particular way, can be cut such that each slice would be identical in size,
Examples include, cubes, cuboids, triangular prisms, cylinders etc
A pretty good selection is shown below.

Secondly ... what is the surface area?
Is the sum of all the areas of all of the surfaces (faces) of a shape.
This can apply to it being a prism or not!
To do this we need to view the shape as lots of surfaces (or faces).
We find the area of each surface (or face) and then add them all together at the end

There are lots of ways of doing this.
Some more visual than others.
Some more helpful than others.
Which ever way you do it ... have a system!

Lions and tigers and bears ... oh my!
Not really ...
But we can think of the surface area of shapes as using the same building blocks of shapes:
Squares and triangles and circles ... oh my!

Finding Surface Areas of Cubes/Cuboids
This is considered the easiest of all shapes!
But it's the one which causes the most mistakes :(

A cuboid is effectively 6 faces:

- Top and bottom which are the same
- Left side and right side (which are the same!)

This means I can find the area of:

1. The front
2. One side

Add them together
5. Double it ...

- Two circles (one at each end)
- A rectangle rolded around it's shortest edge to meet itself.

In this case ... it's easier to see the net to see how we can find the surface area:

We use the idea that the circumference of a circle is πD to help us find the dimensions of one side of the rectangle. The other is given as the length of the cylinder.

$$
T S A=2 \pi r^{2}+2 \pi r L
$$

$+2 \pi r h$
$=2 \pi r h$

Formula for the Surface Area of Cylinder (Closed $1 / 152 \pi r^{2}+2 \pi r h$
This can also be factorised to become: $2 \pi r(r+h)$

Maths is a BFT
Remember, Maths is going to try and trick yo
All prisms can be described as:

- Open ended

This makes a HUGE difference when working out the surface area
the surface area.
Open = No ends!'
(RI/L/L/L/ $\quad T S A=2 \pi r h$
C logged $=$ ends

$$
T S A=2 \pi r^{2}+2 \pi L L
$$

Finding Surface Areas of Prisms (General)
The basics are always the sam
Split the shapes up into faces.
Find the areas of each of the faces and then add them together

(2)

$$
\begin{aligned}
\text { Frow } & =\frac{1}{2} \cdot b \cdot h=\frac{1}{2} \cdot 4 \times 6=12 \mathrm{~cm}^{2} \\
\text { BACK } & =12 \mathrm{~cm}^{2} \\
\text { BOOM } & =12 \times 4=48 \mathrm{~cm}^{2} \\
\text { FACE 1 } & =12 \times 7=84 \mathrm{~cm}^{2} \\
\text { FACE } & =12 \times 7=84 \mathrm{~cm}^{2} \\
\text { SSA } & =12+12+48+84+84 \\
& =24+48+168 \\
& =72+168 \\
& =240 \mathrm{~cm}^{2}
\end{aligned}
$$

(3)

$$
\begin{aligned}
\text { Frow r } & =\frac{1}{2}(5+8) \cdot 5 \\
& =32.5 \mathrm{~cm}^{2} \\
B_{\text {ECK }} & =32.5 \mathrm{~cm}^{2} \\
\text { BASE }= & 8 \times 6.3= \\
\text { TOP } & =5 \times 6.3= \\
S_{\text {TOE }} & =5 \times 6.3= \\
S_{\text {TOE }} & =5.8 \times 6.3=
\end{aligned}
$$

(2)

(4)

\longrightarrow

$$
2 \pi r h \times \frac{40^{\circ}}{360^{\circ}}
$$

What about when we have shapes sitting on shapes.
Easy! Find the surface area of each shape separately,
Easy! Find the surface area of each shape separately, then take away the areas where they overlap!

