., 20ApII2018 Hi.csam
[4A: Rectangular hyperbolas |149 |taceghikl, 2aceghijk, 3bd, 4beft, 5, 7
RECAP
We have been working on all the work for Functions and Relations.
Noom we look at some of the most used functions in Mathematical Methods.
. Rectangular Hyperbola
$\overbrace{- \text { The Square Root Graph }}$
.

* Rectangular Hyperbolas

First things first...there are different versions of Hyperbolas!
First things first ...there are different versions of Hyperbolass
It's important to on ote that we are looking at Rectangular Hyperbolas!
Equation of thefunction:-

(1) $\begin{aligned} & y=\frac{1}{x-1} \\ & y+4\end{aligned}$
(4) $y=\frac{1}{x}+3$
(2) $\begin{aligned} & y=\frac{1}{x+3} \\ & y+4\end{aligned}$
(5) $\underline{\underline{y=\frac{3}{(2 x-1+3)}}}$
(6)
$y=\frac{1}{4 x+2}$

The BASE graph for a Rectangular Hyperbola
You mus memorisg the following shape a important points for all graphs in this chapter.
You muss memorisghe following shape a important points for alg graphs
You will eexpected to show all he relevant information on all graphs!
This will include:
This will include:
: All iturcepts on the x-and y-axes.
All turningpoints
\rightarrow All asymptotes

ransformations of Hyperbolas
Knowing the base graphwe
Examples are shown below.
amples are shown below. now use it to transform.

5

Reflections of Rectangular Hyperbolas
We can reflect in the x-axis and y-xis
Reflection in the x-and y-xxis

We can reflect in the x-axis and

* Dilation from the x-axis factor a fach

Dilation from the y-axis factor a
$x=0$

Translations of Rectangular Hyperbolas

We can translate a function both parallel tot the x-axis and the y-xxis
Translation parallel to the x-axisalunits

$\sqrt{y=\frac{1}{x-2}}$

$$
\xrightarrow{2} \xrightarrow{2}
$$

$$
{ }_{\text {Helpf }}^{\text {Asymy }}
$$

A.

$$
y=0
$$

$$
y=\frac{1}{x}+2
$$

$$
\begin{gathered}
\text { Domain and Range: } \\
: \text { Domain: } \backslash\{(0\}\} \\
\text { Range: } \mathbb{R} \backslash\{2\}
\end{gathered}
$$

$$
0=\frac{1}{x}+2
$$

$$
\begin{array}{lll}
q_{2} & (1,1) & x=-\frac{1}{2} \\
(1,3) & =
\end{array}
$$

Solving for Intercepts
Remember that you need to find anyx
To solve for intercepts you need to:

* - Put $x=0$ oto solve for y-intercepts

$$
y=\frac{3}{0-1}+2
$$

$$
=-3+2
$$

$$
(0,-1)
$$

$$
\begin{aligned}
& y=\frac{3}{x-1}+2 \\
& 0=\frac{3}{x-1}+2 \\
&-2=\frac{3}{x-1} \\
& x-1=\frac{-3}{2} \\
& x=-\frac{3}{2}+1 \\
& x=-\frac{1}{2} \\
&(-1 / 2,0)
\end{aligned}
$$

