Rational Powers (9F)

Wednesday, 14 March 2018 6:05 pm

★ Work to be completed by the end of teaching:

Potional Devera	05	0.0.4 5.6(a) 7			
tational Powers	9F	2,3,4,5-6(e),7			
ECAP:					
Ve have now looked at	peing able to different	tiate the following:			
 Positive whole nur 	nber powers	γ^{3}		-2	
 Negative integer p 	owers	3.0	<u> </u>	-	
 Using the chain rul 	e to differentiste com		00		
Ve now look at extendir	g the idea to rational	powers which can (and will) be used with	the chain rule!		
Ne now look at extendir	g the idea to rational	powers which can (and will) be used with	he chain rule!		
Ne now look at extendir	g the idea to rational	powers which can (and will) be used with	the chain rule!		
Ne now look at extendir	g the idea to rational	powers which can (and will) be used with	he chain rule!		
Ne now look at extendir	g the idea to rational	powers which can (and will) be used with	he chain rule!		
We now look at extendir	g the idea to rational	powers which can (and will) be used with	he chain rule!		
We now look at extendir ational and Irrational	g the idea to rational	powers which can (and will) be used with	he chain rule!		
We now look at extendir ational and Irrational	g the idea to rational	powers which can (and will) be used with	he chain rule!		
We now look at extendir ational and Irrational emember:	g the idea to rational	powers which can (and will) be used with	he chain rule!	2 3	
We now look at extendir ational and Irrational emember: • rational numbers a	g the idea to rational	powers which can (and will) be used with expressed as a fraction.	the chain rule!	2 3	IRRATIONAL
We now look at extendir ational and Irrational emember: • rational numbers a • Irrational numbers	g the idea to rational re those which can be are those which cann	powers which can (and will) be used with expressed as a fraction. ot be expressed as a fraction e.g. π	the chain rule!	² 3 3 4	IRRATIONAL
We now look at extendir ational and Irrational emember: • rational numbers a • Irrational numbers	g the idea to rational re those which can be are those which canno	powers which can (and will) be used with expressed as a fraction. ot be expressed as a fraction e.g. π	the chain rule!	21 3 4	irrational බර
Ve now look at extendir ational and Irrational emember: • rational numbers a • Irrational numbers	g the idea to rational re those which can be are those which canno	powers which can (and will) be used with expressed as a fraction. ot be expressed as a fraction e.g. π	the chain rule!	2 3 4	IRRATIONAL
We now look at extendir ational and Irrational emember: • rational numbers a • Irrational numbers	g the idea to rational re those which can be are those which cannu T($\sqrt{2}$	powers which can (and will) be used with expressed as a fraction. ot be expressed as a fraction e.g. π	the chain rule!	21 3 7 1.6 16	IRRATIONAL
We now look at extendir ational and Irrational emember: • rational numbers a • Irrational numbers	g the idea to rational re those which can be are those which cannot T($\sqrt{2}$	powers which can (and will) be used with expressed as a fraction. ot be expressed as a fraction e.g. π	the chain rule!	213 1.6	
We now look at extendir ational and Irrational emember: • rational numbers a • Irrational numbers	g the idea to rational re those which can be are those which cannot \mathcal{T} $\sqrt{2}$	powers which can (and will) be used with expressed as a fraction. ot be expressed as a fraction e.g. π	the chain rule!	213 1.6 1.6 1.0	IRRATIONAL

Basic Examples

Differentiate the following:

Tricks, tricks and more tricks ... otherwise known as notation

Rational powers tend to trick people over and over again. It is really important you can see rational powers in all equations.

Example: $\sqrt{x^2 + 4}$

 $= (x^{2}+4)^{b_{2}}$

Example
$$\sqrt[3]{x^3 - 3x + 2} = (\chi^3 - 3x + 2)^{\frac{1}{3}}$$

Example
$$(\sqrt[5]{x^2 - 3x + 2}) = (x^2 - 3x + 2)^{1/5}$$

Example: $(x^2 + 3x - 2)^{\frac{1}{3}}$

The Chain Rule: A recap

Now we can use the chain rule to solve these wonderful questions!
Example:
$$\sqrt{x^2 + 4} = (x^2 + 4)^{\frac{1}{2}}$$

 $\zeta'(x) = \frac{1}{2} (x^2 + 4)^{-\frac{1}{2}} 2x$
 $= \frac{1}{2} \cdot 2x (x^2 + 4)^{-\frac{1}{2}}$
 $= \frac{x}{(x^2 + 4)^{-\frac{1}{2}}} = \frac{x}{(x^2 + 4)^{\frac{1}{2}}}$
Example: $\sqrt[3]{x^3 - 3x + 2} = (x^3 - 3x + 2)^{\frac{1}{3}} \cdot (3x^2 - 3)$
 $= \frac{1}{3} (x^3 - 3x + 2)^{\frac{1}{3}} \cdot (3x^2 - 3)$
 $= \frac{1}{3} \cdot 2 (x^2 - 1) (x^3 - 3x + 2)^{-\frac{2}{3}}$
 $= \frac{1}{3} \cdot 2 (x^2 - 1) (x^3 - 3x + 2)^{-\frac{2}{3}}$

Example: $\sqrt[5]{x^2 - 3x + 2}$

1

Example: $\sqrt[5]{x^2 - 3x + 2}$

$$f(x) = (x^{2} - 3x + 2)^{5}$$

$$f'(x) = \frac{1}{5} (x^{2} - 3x + 2)^{-\frac{4}{5}} (2x - 3)$$

$$= \frac{1}{5} (2x - 3)(x^{2} - 3x + 2)^{-\frac{4}{5}}$$