Moving quadratics ... more transformations!

We have already seen that quadratics can be written in a number of different ways:

The above, simply shows the same quadratics expressed in different ways through algebra tricks.
It can be argued than NON E of them are particularly useful.
That's not true of all way of expressing quadratics

$$
\begin{aligned}
& 2+\sqrt{2} \\
& 2-\sqrt{2}
\end{aligned}
$$

(2)

The above are called transformations.
When we move horizontally or vertically we call then translations.
When we stretch the graph we call it a dilation which can happen from the x-axis and the y-axis

Completing the Square
Completing the square is a funky process which turns (most) quadratics into a form we can use to find the axis of symmetry, t he turning points, the x-axis and y-axis crossing points.

$$
y=a(x \pm k) \pm h \text { 米 }
$$

$$
y=\frac{2}{\pi}(x-3)^{2}+6
$$

E.g. Factorise the following function by completing the square: $\quad y=\frac{2 x^{2}+4 x}{4 x}-3$

$$
\begin{align*}
& \left.\frac{(x+2)^{2}}{4}=\frac{x^{2}+4 x}{4}+4\right)-7 \tag{3,6}\\
& (x+2)^{2}-7=y \\
& =
\end{align*} \quad \therefore \operatorname{Te}(-2,7)=
$$

MAX ore MIN

$$
\stackrel{y=x^{2}-6 x-10}{=}\left(x^{2}-6 x-10\right)
$$

$$
\begin{aligned}
& \sqrt{(x+2)}^{2} \\
& =x^{2}+4
\end{aligned}
$$

$$
\begin{aligned}
& (x-3)^{2}=x^{2}-6 x+9 \\
& (x-3)^{2}-19
\end{aligned}
$$

$$
(x+2)
$$

E.g. Factorise the following function by completing the square:

$$
y=\underline{3 x^{2}}+9 x-4
$$

$$
\left.\begin{array}{lcc}
y=3\left[\frac{x^{2}+3 x-4 / 3}{}=\frac{1}{1}\right. & \text { CE } \\
3\left[(x+3 / 2)^{2}-\frac{43}{12}\right. \tag{1.5}
\end{array}\right] \quad T_{8}=\left(-3 / 2,-\frac{43}{4}\right) \quad \text { (1.5) }
$$

$$
\begin{array}{rlr}
y & =3\left[\frac{x^{2}+3 x-4 / 3}{=}\right] & \downarrow \\
3\left[(x+3 / 2)^{2}-\frac{43}{12}\right] & \text { AOS }^{2}=\left(-3 / 2,-\frac{43}{4}\right) & \text { VCE } \\
& =3(x+3 / 2)^{2}-\frac{43}{4} & \frac{-3}{2} \\
& & (x+3 / 2)^{2}=x^{2}+3 x+\frac{9}{4} \\
& &
\end{array}
$$

Finding solutions
E.g. $y=(x-3)^{2}+4$

E.g. $y=(x+4)^{2}-3$

$$
\begin{aligned}
(x-3)^{2}(+4) & =0^{2} \\
(x-3)^{2} & =-4 \\
x-3 & = \pm \sqrt{4-4}
\end{aligned}
$$

$$
\begin{align*}
(x+4)^{2}-3 & =0 \quad(+3) \\
(x+4)^{2} & =3 \\
x+4 & = \pm \sqrt{3} \\
x & =-4 \pm \sqrt{3}
\end{align*}
$$

E.g. $y=2(x-3)^{2}+6$
Axis of Symmetry
We already know that a quadratic has a line of symmetry down the centre.
The x-value enappens to coincide with the mid-point of the two solutions to the quadratic equation.
When we find the x-value, we can find the y-value and hence the maximum or minimum of the quadratic
The Quadratic Equation
Not all quadratics can be solved using the tr-methods, , , ross Methed or Corpleting the square.
We have one more way to be able to do this... and it's suing the Quadratic Formula.

With the quadratic equation we find something pretty awesome happening ... which actually gives me a
hint as to whether a quadratic will have solutions or not
Case 1: $\quad \frac{b^{2}-4 a c>0}{4}$
When the value of this is greater than zero, we know that we will always end up with two solutions

$$
\begin{gathered}
x=\frac{\left.-b \pm \sqrt{\left(b^{2}-4 a c\right.}\right)^{2}}{2 c} \\
a x^{2}+b x+c=0
\end{gathered}
$$

Case 2: $\quad \underline{\underline{b^{2}-4 a c=0}}$
When the value is equal to zero then we only have one solution. This is known as a repeated root.
It's where the graph JUST touches the x-axis

$$
\begin{aligned}
x & =\frac{\left.-b \pm \sqrt{\left(b^{2}-4 a c\right.}\right)}{2 a} \\
& =\frac{-b \pm \sqrt{0}}{2 a} \\
& =\frac{-b \pm 0}{2 a} \\
x & =-b
\end{aligned}
$$

$$
\begin{array}{r}
-\frac{-b=u}{2 a} \\
x=\frac{-b}{2 a} \cdot x
\end{array}
$$

Case 3: $\quad \begin{aligned} & b^{2}-4 a c<0 \\ & \text { negative }\end{aligned} \begin{aligned} & \text { This cannot have a solution and hence the graph will have no solutions. This basically means the } \\ & \text { minimum point is above the } x \text {-axis. }\end{aligned}$ $\sqrt{n} s$

