By the end of the lesson I would like the following work started and completed for homework

RECAP:

Last lesson we looked at the idea of Similar Figures. Previously we had looked at the work for Congruent Triangles
These were triangles which were exactly the same.
We had a number of ways in which we could identify them:

- SSS: All three sides are the same
- SAS: Two sides are the same and one angle
- 掘A: Two angles and one side are the same
- RHS: A right angle, the hypotenuse and one other pair of sides are the same
$\underline{\underline{\square}}$

RECAP: Side, Side, Side 555
For triangles to be congruent, they must be able to have three sides lengths which are the same.
For triangles to be similar, they need to have three sides lengths which are the same ratio to each other.

Example

THESE ARE SIMAR

$$
\text { Ratio }=\frac{\text { Image }}{\text { original }}
$$

ORGINAL
All sides
ARE DIVIsible
By 10
$\left(\operatorname{lat10}=\frac{1}{10}\right)$

$$
=\frac{3}{30}=\frac{1}{10}
$$

$$
A^{\prime \prime}
$$

RECAP: Side, Angle, Side
JAS

$$
\times \frac{1}{10} \div 10
$$

For triangles to be congruent, they need to have two sides which are the same length and share one angle which is the same size. For triangles to be similar, they need to have two sides which are in the same ratio and share one common angle.

Example:

ORIGIN

$$
\text { RATIO }=\frac{1}{3}
$$

$$
\text { Rato }=\frac{\text { Image }}{\text { original }}
$$

Two SIDES ARE
the same rato
oNE ANGLE tiE SAME

RECAP: Angle, Angle, Angle AAA
For triangles to be congruent, they need to have three angles which are the same size.
For triangles to be similar, they need to have three angles which are the same size.

SE IN HIE same rato

RECAP (RUS
For triangles to be congruent, a right angle, the hypotenuse and one other pair of sides have to be the same.
For triangles to be similar, a right angle, the hypotenuse and one other pair of sides have to be of the same ratio.

$$
\frac{2}{12}=\frac{1}{6} \quad \frac{3}{18}=\frac{1}{6}
$$

Right angle
Two sides are in
thle same ratio and
Right angle
tree Right angle,

	4 statements
\Rightarrow	5
$\Rightarrow S$	
$\Rightarrow S$	
	Similaing Statement

$$
\begin{array}{l|lr}
S & D F / A C=2 & \text { corresponding ar } \\
A & \angle A C B=\angle D F E & \text { Using rule sSA w } \\
S & E F / B C=2 & \\
S S & \text { Using SSA Le K now } \triangle A B C\|\| D E E f
\end{array}
$$

Prove similanty

Work out which rule might work for this shape to prove similarity: RHS, SSS, SAS, AAA
\Rightarrow Two triangles share an angle, hence they must be the same: $B A E$ and $D C$ Lines $B E$ and $C D$ are parallel. Hence, $A B E=A C D$. Two more angles are the same. Which would suggest that AEB and $A D C$ are the same.
\Rightarrow Hence, using rule AAA, the triangles are similar: ABE \||| ACD

Prove similarly

Iruve sionilowing

$$
\begin{aligned}
& \angle A C B=D C E \\
& \angle A B C=\angle C D E \quad A \\
& \angle B A C=\angle D E C \quad A \\
& \text { Using AAA, } \triangle A B C M \triangle \triangle C D E
\end{aligned}
$$

