- By the end of teaching I would like the following work to be complete:

Transformations of sine and cosine curves
Remember that we can transform functions in 3 main ways:

- Reflections
- Translation

Dilutions:
We can dilate in two ways; away from the x-axis and the y-axis.
Remember the shortcuts

Dilation from the y-axis

Dilation from the y-axis	
	$y=\sin (x / 2)=\sin \left(\frac{1}{2} x\right) \quad$ Amplitude does not change
Period $=4 \pi$	

$y=\sin \left(\frac{x}{2}-2\right.$

Reflections

(S)

Note: As this is an even function,
the reflection has no real effect
the reflect
the graph

$f(x) \in[-2,6]$
(8)

4

(8)

$$
4
$$

Translations: Horizontal and Vertical

$$
\frac{1}{y=\cos \theta+1}{ }^{1} \downarrow
$$

Graphs of $y=a \sin (n t)$ and $y=a \cos (n t)$
If you notice from the graphs above, we can see that the scales are given in whole numbers.
Even though I have asked for the graphs to be shown in radians the scale seems to be whole numbers.

$$
y=\prod_{\uparrow}^{\operatorname{asin}(n x)} \stackrel{\text { multiples. }}{\leftrightarrows}(\mathbb{1} \quad y=\sin x \quad \sin n x \quad n=1 \quad \text { period }=2 \pi
$$

Amplitude!

$$
\frac{2 \pi}{1}
$$

(2)

$$
\begin{aligned}
& y=\sin \left(\frac{x}{2}\right)^{\operatorname{penod}}=4 \pi^{\frac{2 \pi}{1 / 2}} \quad \frac{2 \pi}{(1 / 2)} \\
& y=\sin n x \quad n=2
\end{aligned}
$$

(3)

$$
\begin{aligned}
& y=\sin n x \quad n=2 \\
& y=\sin (2 x)^{(1 / 2)}
\end{aligned}
$$

$$
y=\sin (2 x) \underline{\text { period }=\pi} \underline{2 \pi}^{\frac{2 \pi}{2}-\frac{\pi}{2}} \frac{2 \pi}{2}
$$

$$
y=\sin (n x) \quad \text { period }=\frac{2 \pi}{n}
$$

¿Realy important Result!

2 normally expressed

$$
\Longrightarrow y=a \sin (n t) \quad \begin{aligned}
\Rightarrow y & \text { amplitude }=a * \\
y=a \cos (n t) & \text { penod }=\frac{2 \pi}{n} \nRightarrow
\end{aligned}
$$

Examples
(1) Penod a Ampliude?

$$
\begin{aligned}
& (3) \sin \theta \rightarrow \begin{array}{l}
A=3 \\
\text { Period }
\end{array}=\frac{2 \pi}{1}=2 \pi \\
& \begin{aligned}
\frac{1}{2} \sin \theta \rightarrow \begin{array}{l}
A \\
\sin ^{\prime} \theta \\
\text { Reriod }
\end{array} & =2 \pi
\end{aligned} \\
& \begin{aligned}
2 \sin \left(\frac{2 \theta}{3}\right) \rightarrow A & =2 \\
\text { Reriod } & =\frac{2 \pi}{2 / 3}=2 \pi \div \frac{2}{3}=2 \pi \times \frac{3}{2} \\
& =3 \pi
\end{aligned}
\end{aligned}
$$

(2) Sketch $f \cdot \mathbb{R} \rightarrow R, f(x)=S \cos (3 x) \quad 0 \leq x \leq \pi$
(1) Always consider the onginal graph!
(2) Sketch original and re.calc the II cuossing points
(3) Skeren II

$$
\text { Amp }=5 \quad \text { Period }=\frac{2 \pi}{3}
$$

(5) $\cos \hat{\beta}_{c}^{b} \quad \operatorname{Pen} \operatorname{cod}=\frac{2 \pi}{3} *$

$$
\frac{\pi}{6}+\frac{4 \pi}{6} \quad \frac{\pi}{3}+\frac{2 \pi}{3} \quad \frac{3 \pi}{2}=\pi
$$

D $)^{3}$

$$
\square \times \frac{1}{3}
$$

