

MafrseuRV

Easy

Engaging
Educational Entertaining

Sign up for free!

Videos come with downloadable notes a www.maffsguru.com

Learning Objectives

By the end of the lesson I would hope that you have an understanding and be able to apply to questions the following concepts:

- Understand what a directed number is
- How to add and subtract directed numbers
- How to multiply and divide directed numbers

This is where

Darren goes

In the previous lesson we looked at what BIDMAS (or BODMAS) was used for. We found that there was order to Mathematics and all was good with the world.

We only used positive numbers in all the examples we completed as, they are the ones we are the most familiar with.

However, there are such things as negative numbers and
this adds a whole new level of excitement to BIDMAS!

Brackets
Indices
Division
Multiplication
Addition
Subtraction

This is where

Darren goes

The puns don't get any better ... I can promise you!

This is where
Darren goes

What is a directed number?

Both positive and negative numbers are directed numbers.
Directed numbers are those which have a direction and a size.
Direction can be both positive and negative.
We can show directed numbers using a number line.

This is where
Darren goes

Using a number line to add and subtract numbers.

When we add a number we move to the right along a number line.
When we subtract, we move to the left along the number line.
We can start with positive and negative numbers.

This is where
Darren goes

Using a number line to add and subtract numbers.

When we add a number we move to the right along a number line.
When we subtract, we move to the left along the number line.
We can start with positive and negative numbers.

Example:

$5-7=-2$

This is where
Darren goes

Using a number line to add and subtract numbers.

When we add a number we move to the right along a number line.
When we subtract, we move to the left along the number line.
We can start with positive and negative numbers.

Example:

$-1-3=-4$

This is where

Darren goes

Those pesky brackets ... aren't they there to confuse us?

The brain is programmed to miss things. Odd huh?
For example, it doesn't like short horizontal lines. So, where it can, it tries to ignore them. We can stop the brain from doing that by using brackets.

So, a previous example could have been written the a different way, but mean the same thing.

Example:

$(-1)-3=-4$

This is where

Darren goes

Multiplying and dividing negative numbers

There are four rules we must use when multiplying and dividing negative numbers. They are a bit of a secret ... so don't tell too many people!

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

SERVICIO SECRETO

TOP SECRET

This is where

Darren goes

Multiplying and dividing negative numbers

There is another way of thinking of this ...

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

When they are the same, they become a
plus

When they are different, they become a minus

This is where

Darren goes

Examples using directed numbers

Example:

$6-13=-7$
$6-13$

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

Examples using directed numbers

Example:

$$
(-5)-11=-16 \quad-5-11
$$

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

This is where

Darren goes

Examples using directed numbers

It's important to know when we use the four rules.
Don't get tricked.

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+
\end{aligned}
$$

Example:

$9-(-7)$

Examples have been extracted, with permission, from

Examples using directed numbers

It's important to know when we use the four rules.
Don't get tricked.

Example:

$(-10)-(-9)$

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

Examples using directed numbers

Notice here that they don't have a bracket around the negative three. My brain is really trying to ignore it!

Don't get tricked.

Example:

5×-3

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

Examples using directed numbers

That's better! The brackets are back.

Don't get tricked.

Example:

$(-8) \times(-7)$

$\theta 8 \times \theta$ フ

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

Examples using directed numbers

Don't get tricked.
Example:
$(-16) \div 4$

$$
\Theta 16 \div \oplus 4
$$

$$
=-4
$$

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

This is where

Darren goes

Examples using directed numbers

Don't get tricked.
Example:
$(-60) \div(-5)$

12

This is where

Darren goes

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

Examples using directed numbers

Don't get tricked.

Example:

$(-100) \div(-4) \div(-5)$

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

Examples using directed numbers

Don't get tricked.
Example:

$(-3)^{2}$	
	$=-3 \times-3$
	$=-3)^{2}$

$$
\begin{aligned}
& + \text { and }+=+ \\
& - \text { and }-=+ \\
& + \text { and }-=- \\
& - \text { and }+=-
\end{aligned}
$$

This is where

Darren goes

Thanks for watching

All videos are available to view at www.maffsguru.com Lesson notes can be downloaded too

Please visit www.youtube.com/maffsguru and subscribe

