Further symmetry properties and the Pythagorean Identity
Sunday, 25 March 2018 9:06 pm
Work to be completed at the end of teaching:

Pythagorean Identity	6 C	2	

RECAP:
Previously we looked at the fact that we can use the Unit Circle to help us find values of $\sin \theta, \cos \theta$ and $\tan \theta$ for angles between 0° and 360°.
We used ASTC to help us realise that, given a reference angle, we can use this to find angles in other quadrants:
$0 \quad 2 \pi$
Example: Find $\sin 150^{\circ}$
Other ways to find angles
Remember, Pythagoras ...
People think he came up with the famous $a^{2}=b^{2}+c^{2}$

$$
c^{2}=a^{2}+b^{2}
$$

It's possible he didn't.
He created his own religion.
He hated people who questioned him.
He (allegedly) murdered someone.
The theory he "badged" we use today and can be applied to the Unit Circle

Using the unit circle and Pythagoras' Theorem we can see that:

Nothing ... but apparently there are things which have everything to do with the price of fish.
We can use his theorem and the knowledge we have to answer some pretty excellent questions:

* Given that $\cos x=\frac{3}{5}$ and $\frac{3 \pi}{2}<x<2 \pi$, find $\sin x$ and $\tan x$.

THE PRICE
OF FISH

A New Approach to Wiled Eonnouniss and Perter Detritions.

MICHAEL MAINELLI

There is, of course an easier way!

$$
\begin{array}{rlrl}
\sin ^{2} \theta+\cos ^{2} \theta & =1 & & \\
\sin ^{2} \theta+\left(\frac{3}{5}\right)^{2}=1 & \tan \theta & =\frac{\sin \theta}{\cos \theta} \\
\sin ^{2} \theta+\frac{9}{25} & =1 & & =-\frac{4}{5} \div \frac{3}{5} \\
\sin ^{2} \theta & =1-\frac{9}{25} & & =-\frac{4}{5} \times \frac{5}{3} \\
\sin ^{2} \theta & =\frac{16}{25} & & =\frac{-4}{3}
\end{array}
$$

$$
\sin \theta= \pm \frac{4}{5}
$$

$$
\begin{aligned}
& \therefore \sin \theta=-\frac{4}{5} \\
&
\end{aligned}
$$

