What does it mean to factorise?
|l When you factorise, you take outside a set of brackets, terms which are common. Most"
Egg. $1 \xrightarrow[x]{(x)+x}=x+x=x(x+1)$ (Aubthant)

$$
\text { (2) } \quad\left(x^{2}\right)^{x}=x(x+1)
$$

(2)

(-3.)
(2)

EBB. 3.

Grouping of terms

This is the early part of factorising quadratics.

When you have three terms ... we need to employ some clever Mathematics...
$\left.\varepsilon_{8.4} \quad(8)+4(4)-3\right)(-12)$

$$
\begin{aligned}
& \frac{1 x^{3}+4 x^{2}-3 x-12}{x^{2}\left(\frac{x+4}{(1)}\right)-\left(\frac{(x+4)}{(2)}\right.} \\
& \frac{(x+4)\left(x^{2}-3\right)}{x}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{1 x^{3}+4 x^{2}}{\left(x^{3}+4 x^{2}-3\right)-3 x-12} \\
\left.\frac{(x-12)}{(x+4)}\right) \frac{(x) \frac{(x+4)}{(2)}}{(x+3)} & \frac{(x+4)\left(x^{2}-3\right)}{1}
\end{array}
$$

E.g. $5 \quad \frac{\downarrow}{\left.\frac{\downarrow}{\left(x^{2} y\right)}-x^{2}\right)-\left(y^{2}\right)(1)}$

Factorised $\left.\left(y^{2}-1\right) x^{2}-1\right)=1\left(y^{2}-1\right)$

Difference of two squares

We know, how to use Foll to multiply out two brackets which are mutinied together.

$$
a^{2} \Theta b^{2}=(a+b)(a-b)
$$

Egg. 6 (x^{2}-(9)

Egg. $7 \quad \underbrace{9 a^{2}-25 b^{2}}_{\downarrow}$

$$
\begin{array}{ll}
(3 a)^{2}-(5 b)^{2} & a^{2}-b^{2} \\
(3 a+5 b)(3 a-5 b) & a=3 a \\
b=5 b
\end{array}
$$

$(S D)^{(2)}=2 S b^{2}$
Sba sb
$S \times 5 \times b \times b=25 b^{2}$

Egg. 8
$3 a^{2}-27 b^{2}$
$3\left[a^{2}-9 b^{2}\right]$
${ }^{3}\left[(a)^{2}-(3 b)^{2}\right]$
$3[(a-3 b)(a+3 b)]$

$$
\begin{aligned}
& (a+b)(a-b) \quad a^{2} \text { anabobta }-b^{2} \\
& \begin{array}{ll}
4 a^{2}-b^{2} & 2 \times 3=6 \\
3 \times y=6
\end{array} \\
& \Rightarrow \begin{array}{l}
\text { (a) }-b^{2}=(a+b)(a-b) \\
\text { That is an importantresult! }
\end{array} \\
& (a+b)(a-b)=a^{2}-b^{2} \\
& 2
\end{aligned}
$$

Earier we said that we can factories even numbers of terms. Generally we
4 terms, we can factorise in pairs Which might allow usto factorise ag
This is the process we use in Factorisation of Quadratic
We turn 3 into 4.

Factorise the following

$$
\text { * }\left\{\begin{array}{lr}
(x+1)^{2}-2(x+1)-3 & \text { B.FT. } \\
a^{2}-2 a-3 & (x+1)=a \\
a^{2}+a-3 a-3 & -3 \\
a(a+1)-3(a+1) & 1-3
\end{array}\right.
$$

$$
\left(\frac{(a+1)(a-3)}{\downarrow} \div\right.
$$

$$
(x+1+1)(x+1-3)
$$

$$
(x+2)(x-2)
$$

$$
\begin{aligned}
& (x-4)(x+2) \\
& \begin{array}{c}
x^{2} \sqrt{-2 x y} / 8 \\
x^{2} \sqrt{-2 y+4 x-8}-8
\end{array}
\end{aligned}
$$

