

MafrseuRV

Easy

Engaging
Educational Entertaining

Sign up for free!

Videos come with downloadable notes a www.maffsguru.com

Learning Objectives

By the end of the lesson I would hope that you have an understanding and be able to apply to questions the following concepts:

- Understand what the general equation of a straight line looks like
- Understand how to express a straight line as an equation
- Read the y-axis intercept and gradient from the equation of a straight line
- Understand what make two lines parallel
- Know how to sketch a straight line given its equation

This is where

Darren goes

Recap

This is a continuation of the work being studied for the Further Maths Units 3 and 4 course.
In the previous lesson we looked at finding the gradient of a straight line using one of two equations

$$
\text { Gradient }=\frac{\text { rise }}{\text { run }} \quad \quad \text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad(1,3) \quad(7,10)
$$

$$
\text { grad }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
\operatorname{grad}=\frac{7}{6}
$$

$$
=\frac{10-3}{7-1}
$$

$$
\begin{aligned}
& (1,3) \\
& 1
\end{aligned}
$$

$$
=\frac{7}{6}
$$

This is where

Darren goes

Gradients and intercepts

Straight lines have two main characteristics which help us draw them; gradient and \mathbf{y}-axis intercept.

From a previous lesson we already know how to find the gradient. This is a measure of slope. If we know one point which sits on the line, we can get to other points. Once I have three points (or more) I can connect them together to make a straight line.

This is where

Darren goes

Drawing a line using one point and the gradient
If we use the example where we have been given one coordinate (1,3) on a line and have a gradient as:

$$
\text { Gradient }=\frac{1}{2}=\frac{\text { rise }}{\text { run }}
$$

We can use the information to draw a straight line.

I rise
 2 runs

This is where
Darren goes

We are normally given a point to help us draw a straight line. This point normally sits on the y-axis. It has a special name; the \mathbf{y}-axis intercept.

Intercept is simply where something cuts or meets something else.

Hence, we might be told the y-axis intercept is 3 .
If we have a gradient of $\frac{2}{3}$ we can draw the straight line.

$$
\begin{aligned}
& (0,3) \\
& \frac{2}{3}=\frac{\text { rise }}{\text { run }}
\end{aligned}
$$

This is where
Darren goes

We are normally given a point to help us draw a straight line. This point normally sits on the y-axis. It has aspecial name;'the y-axis intercept.
 line.

Don't get tricked!

We must make sure that we use the y-axis and not the x -axis as the starting point!

Too many people make silly mistakes here.

y-axis

Lots of people get tricked when we give gradients as whole numbers.

$$
\text { Gradient }=3
$$

$$
\operatorname{grad}=\frac{3}{1}=\frac{\text { Rise }}{\text { Run }}
$$

A whole number is still a fraction. We just write a divide by 1 below the whole number.

This is where
 Darren goes

The equation of a straight line

Barry just loves an equation!

Straight lines are a relationship. They show a connection between an x-value and a y-value. If we know the x-value we can find the y-value (and vice-versa)

Straight lines have a standard format as shown.
It's important to know that the gradient is shown by the letter 'm' and the y-axis intercept by the letter 'c'

This version of the equation of a straight line is called the gradient/intercept form.

This is where

Darren goes

Example

Find the gradient and y-axis intercept of the graph of $y=3 x-4$.

Examples have been extracted, with permission, from the Cambridge Further Mathematics Units 3 and 4 Textbook

Example

Sketch the graph of $y=3 x-1$.

$m=\frac{3}{1}=\frac{\text { rise }}{\text { rus }}$
$c=-1$

Examples have been extracted, with permission, from the Cambridge Further Mathematics Units 3 and 4 Textbook

Different ways of writing the equation of a straight line

Not happy with just having one form of the equation of a straight line, Barry wants another one.

This is called the intercept form as it helps us find two points (the intercepts) on the x - and y-axis really quickly.

$$
2 x+4 y=12
$$

$$
x=0
$$

$$
\begin{aligned}
26 x+4 y & =12 \\
4 y & =12 \\
y & =3
\end{aligned}
$$

$$
y=0
$$

$$
2 x+y / y=
$$

$$
2 x=12
$$

$$
x=6
$$

This is where
Darren goes

Example

Sketch the graph of $3 y+6 x=9$.

This is where
Darren goes

$$
50 \cdot x, \ldots
$$

$$
6 x=9
$$

$x=\frac{9}{6}$

$$
x=\frac{9}{6}
$$

$$
x=\frac{3}{2}
$$

$x=\frac{3}{2}$
$=$

Examples have been extracted, with permission, from the Cambridge Further Mathematics Units 3 and 4 Textbook

Parallel Lines

Parallel lines are such that they will never, ever, ever meet.
They have the same gradient.

|| $\left\{\begin{array}{l}3 x+4 y \\ 3 x+4 y\end{array}=2=7\right.$

$$
\begin{array}{rlrl}
4 y=-3 x+2 & 3 x+4 y & =7 \\
y=\frac{-3}{4} x+\frac{1}{2} & 4 y & =-3 x+7 \\
= & y & =\frac{-3 x}{4}+\frac{7}{4} \\
& =
\end{array}
$$

This is where
Darren goes

Examples have been extracted, with permission, from the Cambridge Further Mathematics Units 3 and 4 Textbook

Thanks for watching

All videos are available to view at www.maffsguru.com Lesson notes can be downloaded too

Please visit www.youtube.com/maffsguru and subscribe

