

Maths made ... Easy
Engaging
Educational Entertaining

SIgn up for free!

Download lesson notes at www.maffsguru.com

Learning Objectives

By the end of the lesson I would hope that you have an understanding and be able to apply to questions the following concepts:

- Understand what a non-linear graph is
- Know how to interpret a non-linear graph

Recap

In the previous lessons we have looked at line segment graphs and step graphs. These are effectively the same idea.

We noticed that the graphs were made up straight line sections. These sections are otherwise known as linear sections.

Linear means straight.

So, what would non-linear mean?
Not straight!
Welcome to this lesson on non straight lined graphs!

Examples of non-linear graphs

Here are some examples of non-linear graphs.

And one I didn't know had a rude word associated with it ...

Rectum is actually Latin for straight.
Latus means wide or broad.
And we will leave the rest of that one there!

Everything else stays the same

The good news ... We can still read the graph in the same way as we would a straight line graph. So, we can use an example ...

The graph represents the speed against time of a particular make of car.

What was the speed of the car after 15 seconds?
After how many seconds did the car reach the following speeds?

- $30 \mathrm{~km} / \mathrm{h}$
- $105 \mathrm{~km} / \mathrm{h}$
- $120 \mathrm{~km} / \mathrm{h}$

$$
15 \operatorname{secs}-110 \mathrm{~km} / \mathrm{ln} 1
$$

Examples have been extracted, with permission, from the Cambridge Further Mathematics Units 3 and 4 Textbook

Plotting a non-linear graph

The population (in millions) of an island country for the years 1811 to 1951 is given in this table. A census is taken every 10 years (but not during war years).

|| Plot the graph.

Estimate the population in:

30 million

\|• 1905

- 1971.

Plotting the graph is going to take forever ... so here is one Cambridge produced earlier ...

Interpolation and extrapolation

We're back to this one again.
Remember in the core module we looked at the difference between interpolation and extrapolation.

When we are looking at a value within the data range we are interpolating. When we are looking at a value outside of the data we've been given, we are extrapolating.

Interpolation is generally thought to be more accurate than extrapolation.

All videos are available to view at www.maffsguru.com
Lesson notes can be downloaded too

Please visit www.youtube.com/maffsguru
and subscribe

