

> EFT

$$
\begin{aligned}
& \text { EVEN fuarnin } \\
& \operatorname{Min}=(0,0) \\
& \text { Complain square }
\end{aligned}
$$

Finding the solution to quadratics is simply us finding where the quadratic
crosses the x-xxi. The standard curve can be moved around, stretched and
$\begin{aligned} & \text { crosses the } x \text {-axis. The standard curve can be moved around, stretched and } \\ & \text { flipped to give lots of different curves. But they all basically come from the } \\ & \text { same one. }\end{aligned} \quad y-x^{2}$

Quadratics can be written in lots of different ways Most of them are written to try and trick you.
 Most of them are written to try and trick Remember, Maths is BiG G FAT Trick.

(2) Floaty pourer of 2
$\frac{\int_{y}^{y=x^{2}}}{\substack{y=\left(x^{2}\right)-2 x}}$

Maitbut why

It all has something to do with w wat the x - and
y-xis san be called.
The x-axis is also called the line $y=0$
The y-axis
wHy?
Along the x-axis there is no height.
So, the e values for all points along the x-axis
are hero!
The same for the y-xis. As there is no
movement along the axis.

x-value of zero! ${ }_{x}^{\text {movement along }}$| x value of zero! |
| :--- |

$$
\begin{aligned}
& y=3 x^{2}+2 x-6 \\
& 0=3 x^{2}+2 x-6
\end{aligned}
$$

$\| \begin{aligned} & \text { When we make the revalue zero......we are finding the crossing points. } \\ & \text { This is called finding the solution. } \\ & \text { When we make quadratics equal to to zero it adds a whole new level of trickery. }\end{aligned}$

$a x^{2}+b x+c=0$
$a x^{2}+b x+c=0$
This is the premise for the work we are about to move onto..
But first, lets not run before we can walk

Expanding brackets
Expanding brackets means to multiply them out.
HiNT: Be careful of the minus signs!!!!
Egg. $4(x+5)=4 x+20$
E.B(-)(4) $=-12+3 x$
 $2 x-16$

ERg. (3x)(4) (2x)3) $=6 x^{2}-9 x+8 x-12$

$$
=6 x^{2}-x-12
$$

Egg. $(x-\sqrt{7})(x+\sqrt{7})=x^{2}+\sqrt{1} x-\sqrt{6}(x-\sqrt{7})$

$$
\underline{\underline{x^{2}-7}}
$$

$\begin{aligned} \text { Egg. }\left(2 x-(\sqrt{3})\left(x+(\sqrt{3})=2 x^{2 \sqrt{3}}-\sqrt{3}=\sqrt{3}\right.\right. & =(\sqrt{7})^{2} \\ & =?\end{aligned}$
$2 x^{2}+\sqrt{3} x-3$ $\sqrt{7} x$
x便

[^0]$1 x-3$
,

[^0]:
 Egg. $3 x+4 \times-3$

