Differentiating x^{n} where n is a negative integer (9C)
Thursday, 8 March 2018 6:34 pm

Work to be completed by the end of teaching:

Negative integer powers	9 C	$1,5,6,7,9,11,12$

RECAP:

We know, from the previous chapter, that the shortcut to differentiate is to:

- Multiply the coefficient by the power and then
- Reduce the power by $1 \mathcal{F}$

$$
y=0 x^{(\boxed{\theta}}
$$

This is true for negative powers also.
The trick with negative powers is to know how they can rrick you!
Examples with basic questions:
$\begin{array}{ll}y=6 x^{4} & y=\frac{1}{x^{(2)}} \\ y^{\prime}=24 x^{3}\end{array}$
$y=(3 x-2)+62 x(-1)+3 x^{2}$
$y=0 x^{(-2)}$
$y=x^{3} \quad y^{\prime}=-2 x^{-3}$
$y=\frac{1}{x^{-3}}$
$y^{\prime}=\underline{=-2 x^{-3}}$
$y=\frac{-2}{x^{3}}$
$y^{\prime}=-2 \times x^{-3}$
$=-2 \times \frac{1}{x^{3}}$
x^{3}
$=-2$
x^{3}

Negative Powers: The Tricks

Trick 1: Division

Spoiler alert: Later on you will come across a method to do this called the Quotient Rule

Function Notation ..

With the function shown below ... we need to ensure that we understand the there will now be values of x for which this function is NOT defined.

$$
f(x)=\frac{x^{2}+2 x-3}{x^{3}}
$$

Hence we would need to write this function, if asked, as:

$$
f \cdot R \backslash\{0\} \Rightarrow R, f(x)=x^{2}+2 x-3
$$

Applications of negative powers

Remember, the whole point of differentiation is to find the gradient of a tangent to a point.
Once we know the gradient of the tangent to a point, we can then proceed to find:

- the equation of the tangent, or
$y=m x+c$
- the equation of the normal, and
- any points of intersection the tangent might have with the rest of the curve

Find the x coordinates of the points on the curve $y=\frac{x^{2}-1}{x}$ at which the gradient of the curve is 5.

$y=\frac{x^{x}}{x}-\frac{1}{x}$
$y=x-\frac{1}{x}$
$y=x-x^{-1}$
$y^{\prime}=1+x^{-2}$
$y^{\prime}=1+\frac{1}{x^{2}}$

$$
\begin{gathered}
m_{1} \times m_{2}=\frac{1}{2}=\frac{1}{m_{2}}=\frac{1}{2} \Rightarrow \frac{1}{2} \\
m_{1}=\frac{1}{3} \\
m_{1}=\frac{m_{2}}{2}=-\frac{3}{2}
\end{gathered}
$$

(5) $=(1)+\frac{1}{x^{2}}$

$$
\begin{aligned}
& 4=\frac{1}{x^{2}} \\
& x^{2}=\frac{1}{4}
\end{aligned}
$$

$$
x= \pm \sqrt{\frac{1}{4}}
$$

$x=\frac{1}{2}$
\qquad

