Sunday, 18 February 2018 7:24 pm

We already know that a quadratic has a line of symmetry down the centre. The X-value happens to coincide with the mid-point of the two solutions to the quadratic equation. When we find the X-value, we can find the Y-value and hence the maximum or minimum of the quadratic $\int_{-\infty}^{\infty} dx dx$	$x = -\frac{b}{2a}$
\ ×*	
$\left \right \left \right \left \right \left \right \left \right \left \right \left \right \right \left \left \right \left \right \left \right \left \right \left \right \left \right \left \left \right \left \right \left \right \left \right \left \left \right \left \right \left \right \left \left \right \left \right \left \right \left \right \left \left \right \left \right \left \left \right \left \right \left \right \left \left \right \left \right \left \left \right \left \right \left \left \left \right \left \left \left \right \left \left $	
$\begin{array}{c} y = (x-3) - 6 \\ y = (3,-6) \end{array}$	
	=P .x=3

How to do this on the CAS

Quadratics (Topic 3) Page 1

(FP)

Work to be completed by the end of the lesson:

Work to be completed by the end of the lesson:

MM Ex. 3E 1cegh 2begh 3cdfgl 4bc 5ac(CAS) 6aef(CAS)