

Integration or Antidifferentiation

Year 12 Specialist Mathematics Units 3 and 4

Learning Objectives

By the end of the lesson I hope that you understand and can apply the following to a range of questions from the Unit 3 and 4 Specialist Mathematics course.

- Understand what is meant by a general antiderivative
- · Understand and recall the basic antiderivatives
- Understand what the definite integral is and what it finds
- Know how to draw graphs of functions and their antiderivatives

Recap of past learning

Much of the work we are going to look at in this video has been covered before in Methods 1 and 2 or Methods 3 and 4 (dependent on where you are in your learning journey).

We know that antidifferentiation is the inverse to differentiation. We can find a function from its antiderivative using this process.

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

General antiderivative

When we differentiate a constant, we know it goes to zero.

This means that the following functions all have the same differential:

This makes sense as they are the same function but translated by differing amounts vertically.

If, when we differentiate we **multiply by the power and then subtract one from the power i**t makes sense that to reverse the process we **add one to the power and divide by the new power**.

If we do this with y' = 2x we get back to $y = x^2$ but there seems to be no way to recover the constant.

In fact, we cannot recover it without more information and so we need to put a placeholder 'c'

y = 200

 $y = \frac{k x^2}{x} = x^2$

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook www.maffsguru.com

General antiderivative

It's important to note that when we have a function and we antidifferentiate it, we must place a 'c' at the end unless the question states it wants **an antiderivative** in which case we can have the 'c' values as zero.

So, $\int 2x \, dx = \{x^2 + c : c \in \mathbb{R}\}$

Whilst we don't normally use the above set notation it's important that you note that there is not one unique antiderivative for a given function.

 $\int 2x \, dx = x^2 + c$

The above is called the general antiderivative of 2x.

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Basic antiderivatives

This table (from the Specialist Maths book) is pretty helpful and recaps the learning you should already have acquired.

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b) + c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+c$	

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

The definite integral and signed area

When we are given limits on an integral, we need to be careful as to whether we are being asked to find the **signed area** under the curve between the two limits given or the actual area. The limits are x values.

The definite integral and signed area

We might know that, when we take the modulus of a function, we are reflecting any part of the graph which falls below the x-axis to above the x-axis. This fact, can be used to find the total area under the graph in another way!

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

The definite integral

When we are given limits on an integral, we are finding the **signed area** under the curve between the two limits given. The limits are x values.

Hence,

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Where F is any antiderivative of f.

This is awesome! Think about the value of the constant

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Find an antiderivative of each of the following:

• $\sin(3x-\frac{\pi}{4})$

• $6x^3 - \frac{2}{x^2}$

• e^{3x+4}

$$\int \sin(3\pi - \frac{\pi}{4}) dx$$

$$= -\frac{1}{3}\cos\left(3\pi - \frac{\pi}{4}\right)$$

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+c$	

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Find an antiderivative of each of the following:

- $\sin(3x-\frac{\pi}{4})$
- e^{3x+4}
- $6x^3 \frac{2}{x^2}$

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax + b)$	$\frac{1}{a}\sin(ax+b)+c$	

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Find an antiderivative of each of the following:

- $\sin(3x \frac{\pi}{4})$
- e^{3x+4}
- $6x^3 \frac{2}{x^2}$

3x" +

ビ

2

SC

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+c$	

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Evaluate each of the following integrals: π_{L} TI/2 x^n $\int_{0}^{\frac{\pi}{2}} \cos(3x) dx$ $\int \cos(3\pi c) \cdot d\pi c = \left[\int \sin(3\pi c) \right]^{2}$ $(ax+b)^n$ x^{-1} 1 $\int_{-\infty}^{\infty} (e^{2x} - e^x) \, dx$ Ф $\overline{ax+b}$ e^{ax+b} $\int_{0}^{\frac{\pi}{8}} \sec^2(2x) dx$ $= \left(\begin{array}{c} 1 \\ 3 \\ 3 \end{array}\right) \left(\begin{array}{c} 3 \\ - \end{array}\right) \left(\begin{array}{c} 1 \\ - \end{array}\right$ sin(ax + b) $\cos(ax + b)$ $\sqrt{2x+1}dx$ -- 0

 $\int f(x) dx$ f(x) $\frac{x^{n+1}}{n+1} + c$ where $n \neq -1$ $\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$ where $n \neq -1$ $\log_e x + c$ for x > 0 $\frac{1}{a}\log_e(ax+b)+c$ for ax + b > 0 $\frac{1}{a}e^{ax+b}+c$ $-\frac{1}{a}\cos(ax+b)+c$ $\frac{1}{-\sin(ax+b)} + c$

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Evaluate each of the following integrals: #18 $\int Sec^{2}(2x) dx$ $= \int \int form(2x) \int \frac{1}{2}$ $\int_{0}^{\frac{\pi}{2}} \cos(3x) dx$ $\int^1 (e^{2x} - e^x) \, dx$ $\int_{0}^{\frac{\pi}{8}} \sec^2(2x) dx$ $\int_{0}^{1} \sqrt{2x+1} dx$ $= \frac{1}{2} \operatorname{fan} \left(\begin{array}{c} t \\ - \end{array} \right) - \frac{1}{2} \operatorname{fan} 0$ 1 -0 ~ 1 े २

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+c$	

Sec² (a)(16) -tan (ax+6) + c

Evaluate each of the following integrals:

 $\int_{0}^{\frac{\pi}{2}} \cos(3x) dx$ $(e^{2x} - e^x) \, dx$

 $\int_{0}^{\frac{\pi}{8}} \sec^2(2x) dx$

 $\int \sqrt{2x+1} dx$

 $=\frac{1}{3}(3\sqrt{3}-1)$

f(x)	$\int f(x) dx$	
x ⁿ	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x ⁻¹	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+c$	

Find an antiderivative of

 $\frac{1}{4x+2}$

$$\int \frac{1}{4xr^2} dx =$$

$$= \frac{1}{4} \log \left(\frac{4x}{x} \right)$$

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax + b)$	$\frac{1}{a}\sin(ax+b)+c$	

Evaluate

$$\int_0^1 \frac{1}{4x+2} dx$$

$$= \begin{bmatrix} 1 & \log_{e} \left[4x + 2 \right] \end{bmatrix}_{0}^{1}$$

$$= \begin{bmatrix} 1 & \log_{e} \left(4x + 2 \right) \end{bmatrix}_{0}^{1}$$

$$= \frac{1}{4} \log_{e} \left(6 - \frac{1}{4} + \frac{1}{4} \right) \int_{0}^{1}$$

$$= \frac{1}{4} \log_{e} \left(6 - \frac{1}{4} + \frac{1}{4} \right)$$

$$= \frac{1}{4} \left(\log_{e} 6 - \log_{e} 2 \right)$$

$$= \frac{1}{4} \log_{e} 3$$

$$= \frac{1}{4} \log_{e} 3$$

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+c$	

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Evaluate = [10ge 4x+2] 4 $\int_{-2}^{-1} \frac{1}{4x+2} dx$ $= \left(\begin{array}{c} 1 & \log_2 2 \\ 4 & \end{array}\right) - \left(\begin{array}{c} 1 & \log_2 6 \\ 4 & \end{array}\right)$ $= \frac{1}{4} \log_{e} \frac{1}{3}$ $= -\frac{1}{4} \log_{e} 3$ $= -\frac{1}{4} \log_{e} 3$

f(x)	$\int f(x) dx$	
x^n	$\frac{x^{n+1}}{n+1} + c$	where $n \neq -1$
$(ax+b)^n$	$\frac{1}{a(n+1)}\left(ax+b\right)^{n+1}+c$	where $n \neq -1$
x^{-1}	$\log_e x + c$	for $x > 0$
$\frac{1}{ax+b}$	$\frac{1}{a}\log_e(ax+b)+c$	for $ax + b > 0$
e^{ax+b}	$\frac{1}{a}e^{ax+b}+c$	
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)+c$	
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)+c$	

 $\frac{1}{3} = 3^{(-)}$

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Graphs of functions and their antiderivatives

Using information from graphs we can find equations of the original function and the antiderivative. For example, given the two graphs we can find f(x) and F(x) assuming that F is an antiderivative of f

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

The graph of y=f(x) is as shown.

Sketch the graph of y=F(x), given that F(0)=0.

 $\sim l$

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook

Examples have been extracted, with permission, from the Cambridge Specialist Mathematics Units 3 and 4 Textbook **www.maffsguru.com**

Learning Objectives: Revisited

By the end of the lesson I hope that you understand and can apply the following to a range of questions from the Unit 3 and 4 Specialist Mathematics course.

- Understand what is meant by a general antiderivative
- · Understand and recall the basic antiderivatives
- Understand what the definite integral is and what it finds
- Know how to draw graphs of functions and their antiderivatives

Live Streamed Year 12 General Maths on Twitch and YouTube: Click here for information

Making Maths Easy, Engaging Educational, Entertaining

MAFFS GURU

