Introducing ratios

Sunday, 12 April 2020 10:49 an

- By the end of the lesson I would hope that you have an understanding and be able to apply to questions the following concepts:
 - · Understand what a ratio is
 - · Understand the order of a ratio is important
 - · Understand the link between ratios and the unitary method
 - · Be able to write equivalent ratios

RECAP

This is the next lesson in the series dealing with Real Numbers at a Year 8 level.

Having looked at Fractions/Decimals/Percentage and now circles we move onto a different (but the same) concept.

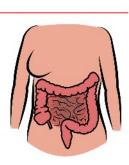
SAME SAME SE SAME SAME

Remember the work we did on the unitary method ...

2·S = 7·62

When we wrote the working out, we were actually expressing it as a ratio. We can interchange the "=" and another symbol for ratios.

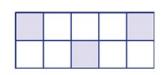
The colon


And I don't mean the colon in the human body!!!

There are many times I wish I was an English teacher.

I have many times sat and wondered at the correct use of the colon sign, ":"

I also wonder at the correct usage of the semi-colon ";"


I also wonder when the word "Fruits" became acceptable English!!!!

The colon in mathematics, means a ratio is being expressed. How could we describe the ratio of <mark>shaded</mark> and <mark>unshade</mark>d boxes in the following shapes?

Shaded : unshaded

Shaded: wshaded

4

Shaded: unshaded

3 : 7

1:2

Shaded : wishaded

5 . 4

Shaded : wisheded 3: 7

The most important thing in the sentence above is the order of the wording.

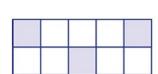
How could we describe the ratio of **shaded** and **unshaded** boxes in the following shapes?

This tells you the order of the ratios which must be expressed.

Ratios and Fractions

Ratios are, really, fractions. Just expressed in a different way.

If we look at the above shapes, we can compare the ratios and fractions for each shape


Shaded: unshaded 1 : 2

uns haded Shaded

Shaded: unsh

sh: un

Can you see the link?

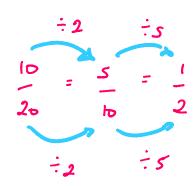
Ratios, like fractions, can be simplified and given as equivalent

Recap: Equivalent fractions

We know that equivalent means the same.

The following fractions are equivalent.

We simply multiplied the numerator and denominator by the same number.


$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{10}{20}$$

$$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{10}{20}$$

Recap: Simplifying fractions

We know that we need to simplify fractions whenever we can.

We simplify by dividing the numerator and denominator by a number (the same number).

Ratios can also be equivalent and simplified.

If I'm baking a cake, the recipe might look like the following:

Classic butter cake



INGREDIENTS

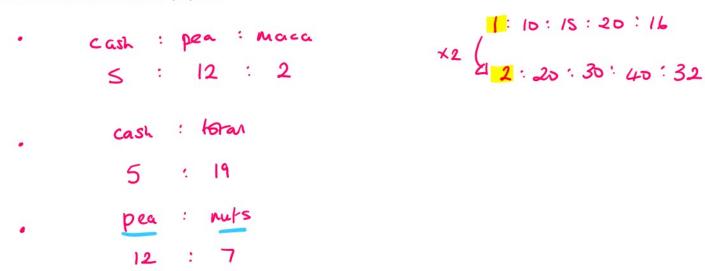
- 250g butter, softened, chopped
- 1 cup (220g) caster sugar
- ☐ 1 teaspoon vanilla bean paste
- ☐ 3 Coles Australian Free Range Eggs, at room temperature
- 2 cups (300g) selfraising flour
- ☐ 1/2 cup (125ml) milk
- Coles Rainbow Confetti sprinkles, to decorate

VANILLA BUTTERCREAM

- ☐ 190g butter, softened
- 2 1/4 cups (360g) icing sugar mixture
- 2 tablespoons milk
- ☐ 1 teaspoon vanilla bean paste
- ☐ Pink liquid food colouring

Then I would be using Maths and equivalent ratios to find out how much of each ingredient I would need

Examples to show how to use ratios


Examples

The following examples are taken, with permission, from the Cambridge Essentials Year 8 Textbook

A sample of mixed nuts contains 5 cashews, 12 peanuts and 2 macadamia nuts. Write down:

- the ratio of cashews to peanuts to macadamias
- the ratio of cashews to the total number of nuts
- · the ratio of peanuts to other nuts

REMEMBER: The order of the ratios is really important!

1:2:6

Complete each pair of equivalent ratios.

$$4 : 9 = 16:?$$

$$30:15 = ??:5$$

$$4 : 9$$

$$16 : 36$$

$$30 : 15$$

$$30 : 15$$

$$30 : 15$$