

Gradientintercept form

Year 9 Mathematics

Learning Objectives

By the end of the lesson I hope that you understand and can apply the following to a range of questions from the Year 9 Mathematics course.

- Know what the gradient-intercept form of a straight line is
- Be able to find the gradient and intercept from an equation
- Be able to write equations by reading the gradient and intercept from a straight line.
- Be able to rearrange linear equations

RECAP

We are powering through this section of the course. In previous lessons we have looked at how are can:

- Find x- and y-intercepts of straight lines
- Use intercepts to draw straight lines
- Draw horizontal lines
- Draw vertical lines
- Find the gradient of a range of straight lines

Now it is time to link them all together!

Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

Parallel gradients

desmos. com

We know, from previous Maths topics, that the word parallel means two lines will never meet.

In this chapter is means that two lines which are parallel will **never meet**.

Examples of parallel lines are shown on the right (with their respective equations).

What do you nice about the equations?

What is different about the equations?

Gradient-intercept form of an equation

The rest of the work in this chapter relates to the following **general equation**. This is the gradient-intercept form of a straight line.

All straight lines can be written in the form:

y = mx + c

у

4-0 + 9

Where x and y are the letters shown on the x- and y-axes. The m stands for the value of the gradient The c stand for the y-axis intercept.

Examples of gradient-intercept form

Here are some examples of lines written in gradientintercept form.

Please note that they all start with y=.

Writing the equation in a different way is one of the easiest ways to trick you!

$$y = 2x + 1$$
$$y = -3x$$
$$y = 5x - 2$$
$$y = 6x$$

Writing down the gradient and intercept from an equation

Given the following equations, write down the gradient and intercept:

y = -3x

y = 6x

y = 2x + 1y = y = 5x - 2y= 5x - 2 y = 2x + 1m = 5 int (0, -2)m = 2 int : (0,1) y = 6x = -3x m = -3 int; (0,0) m = 6 int (0,0) y = -3x

Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

Trying to trick you!

Maths is all about the tricks.

Is the following line in gradient-intercept form?

$$4x + 2y = 10$$

Nope! This is intercept form.

We cannot read the gradient and intercept from this as it's in the wrong form. We have to transpose the equation to get the y on its own!

y = mx + C

÷2 4x + 2y =D 23 22 = 5 - 2x- 2x + 5U y m = -2int : (0,5)

Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

Converting from intercept form to gradient-intercept form

Transpose the following equation to turn it into gradientintercept form:

x + 2y = 6

3z + 2y = 6 - 3cX --x+624 $-x + \frac{6}{2}$ y y _ x _ +3

y =

Coming soon

If I were to give you only two coordinates, could we find the equation of the straight line which would join them?

Without drawing them on a set of axes?

For example, (-1, 1) and (1, 5)

Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

Coming soon

If I were to give you only two coordinates, could we find the equation of the straight line which would join them?

Without drawing them on a set of axes?

For example, (-1, 1) and (1, 5)

Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

