

Gradient and direct proportion

Year 9 Mathematics

Learning Objectives

By the end of the lesson I hope that you understand and can apply the following to a range of questions from the Year 9 Mathematics course.

- Understand what it means to be proportional
- To know the form of the equation that links two variables that are proportional
- Know what rate of change means
- Know what constant rate of change means

The following table in the textbook for Question 8 was really thought provoking. It tested your **understanding** and not your ability to regurgitate. Given two pieces of information, can we find the third missing piece of the puzzle?

Complete this table showing the gradient, *x*-intercept and *y*-intercept for straight lines.

	Α	В	C	D	E	F
Gradient	3	-1	<u>1</u> 2	$-\frac{2}{3}$	0.4	-1.25
<i>x</i> -intercept	-3			6	1	
y-intercept		-4	<u>1</u> 2			3

Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

RECAP

In previous lessons we have looked at straight lines and more recently, what the gradient means.

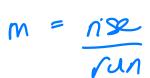
Gradient is a measure of slope and, for straight lines, will be constant for the whole line regardless which two points I choose to measure it.

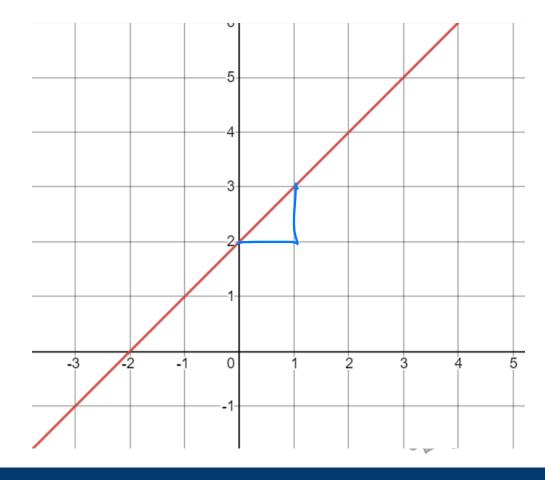
Straight line graphs show **direct proportionality**.

The **rate of change** of the y-value is proportional to the rate of change of the x-value.

So, for things to be proportional they must increase at the same rate.

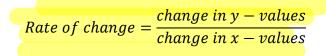
This is what we're going to look at today.





Rate of Change

It is important to note the following:

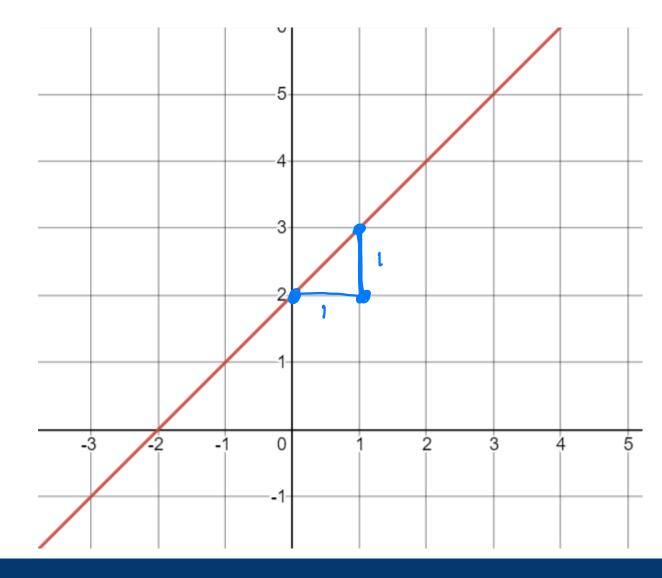


Hold on ... this seems to be the same as:

Rate of change = $\frac{y_2 - y_1}{x_2 - x_1}$

Which is the same as the gradient.

And ... Barry strikes again! **Gradient** and **rate of change** are the **same thing**. Sigh.



Average Speed: Direct Proportion

Average speed is a great one as this is a measure of direct proportion.

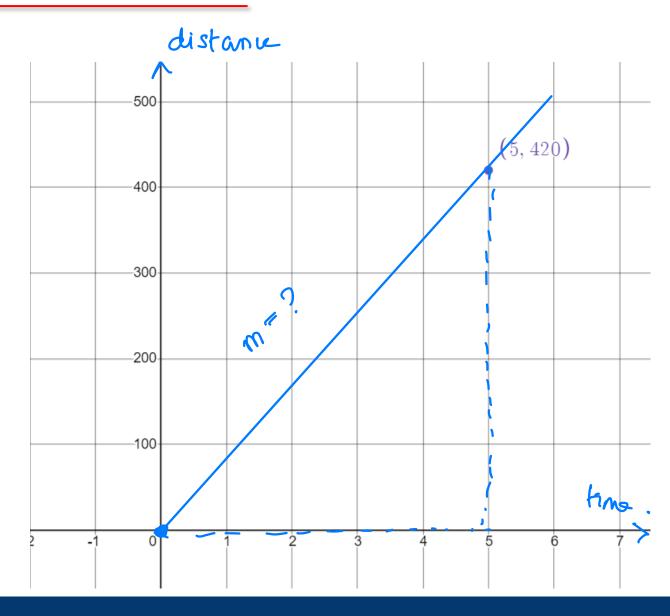
If I travel for 5 hours and cover 420 km I can make an assumption about my trip.

The speed ai travel is constant.

I also notice that the information given is **a point on a graph** which allows me to draw straight lines.

It makes sense that, in 2.5 hours I will have travelled 210km. In 1 hour I will have travelled 84 km.

 $m = \frac{420}{5} = \frac{84}{5}$ 1hr = 84 km $\frac{1}{5}hr = 42 km$



Using information from a question to help plot points

The questions you will be looking at will all be direct proportion. The rate of change will be the same. Hence, the question **must** give you one (or two) points to enable you to answer questions (or to draw a graph).

Example:

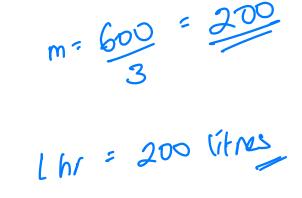
Water is poured into an empty tank at a constant rate. It takes 3 hours to fill the tank with

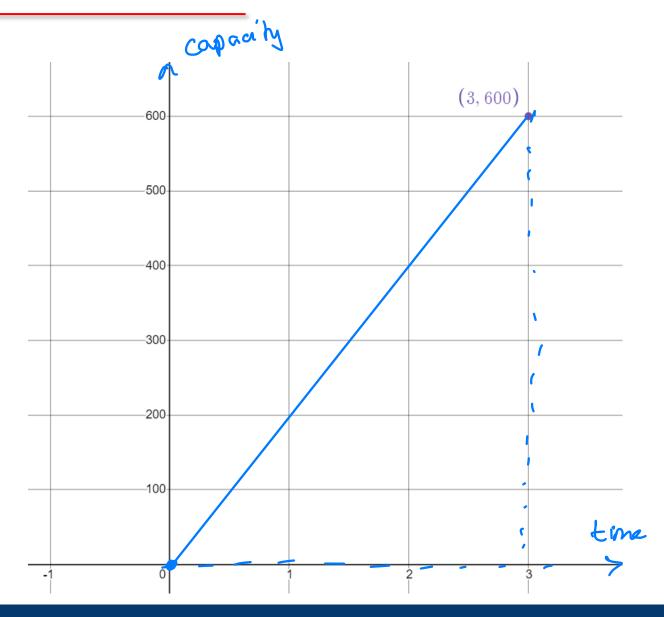
600 litres.

(3, 600)

The highlighted parts are a coordinate so I can draw a straight-line graph.

This will allow me to answer other questions.



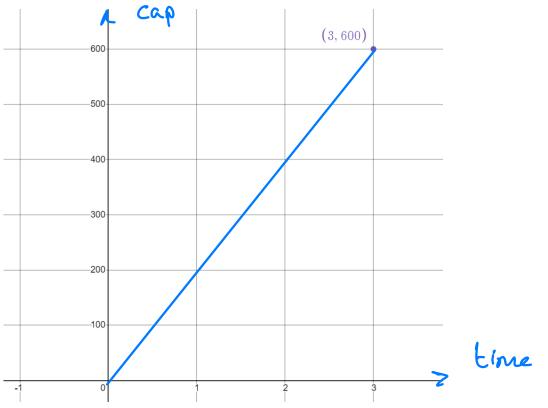


Finding rules from lines

Hopefully it is become clear that the rule for an equation can be gained from the following scaffold:

y variable = gradient $\times x - variable \pm constant$

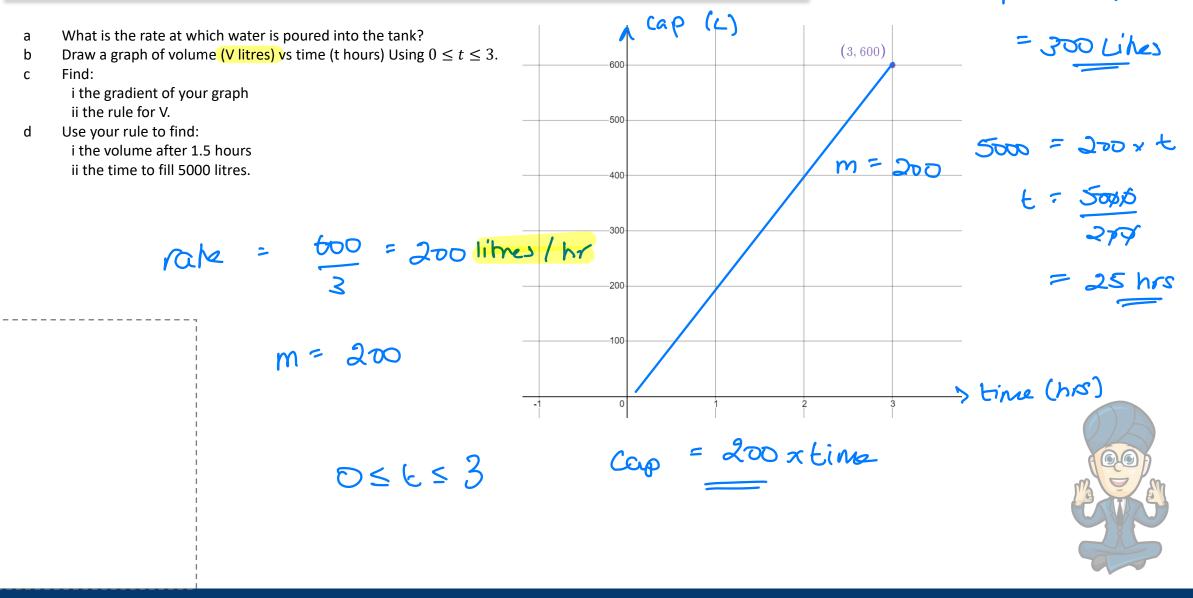
Capacity = 200 x time



Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

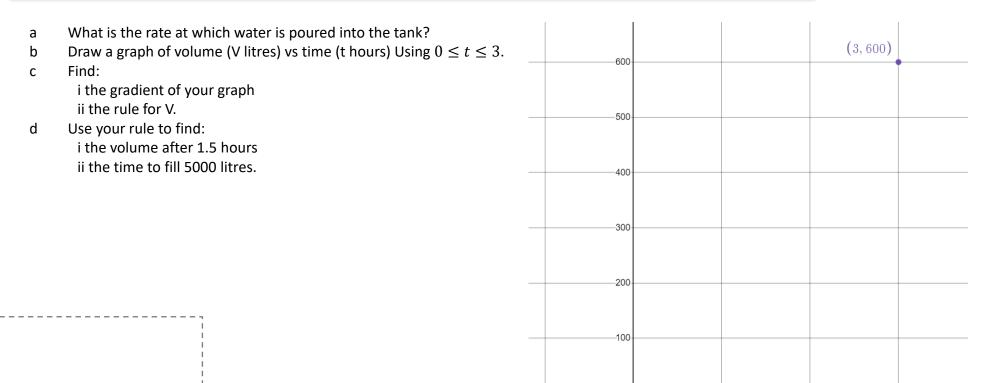
Using information from a question to help plot points

Cap= 200 × 1.5



Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

Using information from a question to help plot points



Examples have been extracted, with permission, from the Cambridge Essentials (Year 9) Textbook

ż.

2

0

-1

