

Learning Objectives

By the end of the lesson I hope that you understand and can apply the following to a range of questions from the Year 9
Mathematics course.

- To know how to use Pythagoras' Theorem to find the unknown side which is not the hypotenuse
- Be able to use Pythagoras' Theorem to find the length of a shorter side.

RECAP

In a previous lesson we looked at how, for right angled triangles, there is a relationship between the sum of the areas of the two shortest sides of a right angled triangle and the area of the hypotenuse.

This is only true for right angled triangles.
The relationship is more formally known as:

$$
c^{2}=a^{2}+b^{2}
$$

In the previous lesson we looked at how to find the hypotenuse (which is the longest side) of a right-angled triangle. Let's use the same theory to find the length of a shorter side.

Let's jump straight into some examples!

Find the value of the pronumeral of the following triangle. Round your answer to two decimal places and give an exact answer.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
17^{2} & =a^{2}+15^{2} \\
289 & =a^{2}+225 \\
289-225 & =a^{2} \\
64 & =a^{2} \\
\sqrt{64} & =a \\
a & =8
\end{aligned}
$$

$$
\begin{aligned}
a & =\sqrt{64} \\
& =8
\end{aligned}
$$

Example 2

Find the value of the pronumeral of the following triangle. Round your answer to two decimal places and give an exact answer.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
10^{2} & =7.6^{2}+b^{2} \\
100 & =57.76+b^{2} \\
100 & -57.76=b^{2} \\
b^{2} & =42.24 \\
b & =\sqrt{42.24} \\
& =\frac{4 \sqrt{6 x}}{5}
\end{aligned}
$$

$$
\therefore x=\frac{4 \sqrt{66}}{5}
$$

$$
x=6.50
$$

Example 3

Find the value of the pronumeral of the following triangle. Round your answer to two decimal places and give an exact answer.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
3^{2} & =a^{2}+a^{2} \\
9 & =2 a^{2} \\
4 \cdot 5 & =a^{2} \\
a & =\sqrt{4 \cdot 5}
\end{aligned}
$$

$x=\underline{\underline{2.12}}$

Questions to complete:

The questions I would like you to complete for this lesson are:
Exercise 3B: Finding the length of the shorter sides
Questions: 2ace, 3cf, 4ab, 6a, 7, 8, 10

Extension Questions (optional)

13

Making Maths
Easy, Engaging
Educational, Entertaining

Nevgstor: Heme

