

Finding the length of the shorter sides

Year 9 Mathematics Mainstream

www.maffsguru.com

Learning Objectives

By the end of the lesson I hope that you understand and can apply the following to a range of questions from the Year 9 Mathematics course.

- To know how to use Pythagoras' Theorem to find the unknown side which is not the hypotenuse
- Be able to use Pythagoras' Theorem to find the length of a shorter side.

RECAP

In a previous lesson we looked at how, for right angled triangles, there is a relationship between the sum of the areas of the two shortest sides of a right angled triangle and the area of the hypotenuse.

This is **only true** for right angled triangles.

The relationship is more formally known as:

$$c^2 = a^2 + b^2$$

In the previous lesson we looked at how to find the hypotenuse (which is the longest side) of a right-angled triangle. Let's use the same theory to find the length of a shorter side.

Let's jump straight into some examples!

Find the value of the pronumeral of the following triangle. Round your answer to two decimal places **and** give an exact answer.

$$c^{2} = \alpha^{2} + b^{2}$$

$$17^{2} = \alpha^{2} + 15^{2}$$

$$289 = \alpha^{2} + 225$$

$$289 - 225 = \alpha^{2}$$

$$64 = \alpha^{2}$$

$$64 = \alpha$$

$$\alpha = 8$$

Example 2

Find the value of the pronumeral of the following triangle. Round your answer to two decimal places and give an exact answer.

$$c^{2} = a^{2} + b^{2}$$

$$b^{2} = 7 \cdot b^{2} + b^{2}$$

$$100 = 57 \cdot 7b + b^{2}$$

$$100 - 57 \cdot 7b = b^{2}$$

$$b^{2} = 42 \cdot 24$$

$$b = \sqrt{42 \cdot 24}$$

$$- 4\sqrt{6b}$$

Example 3

Find the value of the pronumeral of the following triangle. Round your answer to two decimal places **and** give an exact answer.

$$c^{2} = \alpha^{2} + b^{2}$$

$$3^{2} = \alpha^{2} + \alpha^{2}$$

$$9 = 2\alpha^{2}$$

$$4 \cdot 5 = \alpha^{2}$$

$$\alpha = \sqrt{4 \cdot 5}$$

Questions to complete:

The questions I would like you to complete for this lesson are:

Exercise 3B: Finding the length of the shorter sides

Questions: 2ace, 3cf, 4ab, 6a, 7, 8, 10

Extension Questions (optional)

13

AFFS GURU Search Content Pricing Contact Me Live Streamed Year 12 General Maths on Twitch and YouTube: Click here for information **Making Maths** Easy, Engaging **Educational, Entertaining** Navigation: Home Why choose MaffsGuru? I hate talking about myself. So, here are some of the amazing comments I receive about the videos and content I produce followed by reasons to use the resource: 66 I wish I watched your videos before naplan Overjoyed Cherry (youtube)

VCAA exam questions

VCE lessons, where possible, include the use of past VCAA exam questions to

CE lessons, where possible, clude the use of past VCAA

VCAA exam questions

Professional Development

This resource isn't just meant for students. I hope it will be

nis resource isn't just mea or students. I hope it will b

Professional Development

Downloadable notes

Every lesson has downloadable notes. Whatever I write on the screen, you can download for

Every lesson has downloadable notes. Whatever I write on th

Downloadable note

Respected Presenter

I currently present for Cambridge University Press and Nelson - as well as produce my own content for

I currently present for ambridge University Pre and Nelson - as well as roduce my own content for

Respected Presenter

