Translations

Sunday, 11 February 2018 7:22 pm

By the end of the lesson I would hope that you have an understanding of the concepts below which you can apply to a number of complex questions:

- Know what it means to translate something
- Know how to use the correct notation
- Apply transformations to sketches of graphs
- Know how to use transformation algebra to go from a base graph to a transformed graph

RECAP

This is all very exciting and builds on the work which was covered in Methods 1 and 2.
The first two-thirds of the Cambridge Essentials Textbook for Methods 3 and 4 is graph sketching and transformations. There is a lot to cover.
This lesson builds on the work from last year but goes deeper.

TRANSLATIONS: A new perspective
Translation is a movement of a point (or a series of points) in a horizontal and/or vertical direction. This can be described as parallel to the x-axis or parallel to the y-axis.

Looking at this from a graphical perspective first:

Movement one unit to the left \sim

Movement one unit to the right

$$
\begin{aligned}
& \text { (1) } y=x^{2} \\
& y=(x-1)^{2} \\
& \text { 2 }
\end{aligned}
$$

Movement one unit in the positive direction of the y-axis
($\sqrt{y=x^{2}}$

Movement one unit in the negative direction of the y-axis
(1) $y=x^{2}$
$y=x^{2}(-1)$

There are a number of short cuts we can use to remember how these all work.
We can also use algebra to help us.

USING ALGERBRA to do TRANSFORMATIONS

A coordinate and it's image can be expressed using algebra:
(x, y) maps onto $\left(x^{\prime}, y^{\prime}\right)$

If we have a translation of 4 units to the right and 2 units down then we can express this as:
(x, y) maps onto $(x+4, y-2)$
$(x, y) \quad\left(x^{\prime}, y^{\prime}\right)$

* (x, y) maps onto $(x+h, y+k)$

Looking at one-co-ordinate:

Find the image of the point $(3,-4)$ after a translation of 3 units in the negative direction of the x-axis and a translation of 3 units in the positive direction of the y-axis.

$$
\begin{array}{cc}
A \\
(x, y) & (x, 3, y+3) \\
(3,-4) & (0,-1)
\end{array}
$$

(x, y)
$(x+4, y-2)$

More generally:

Extending this to a function (hence a collection of ordered pairs)

Using the idea of algebraic manipulations, find the equations of the transformed graph of $y=x^{2}$ under a translations of 4 units in the positive direction of the x-axis and a translation of 2 units in the negative direction of the \mathcal{X}-axis

$$
\begin{aligned}
& y \\
& \begin{aligned}
(x, y) \longrightarrow & (x+4, y-2) \\
& (x, y, y)
\end{aligned} \\
& x^{\prime}=x+4 \quad y^{\prime}=y-2 \\
& 2 \\
& y \\
& y=x^{2} \\
& x=y \\
& y^{\prime}+2=\left(x^{\prime}-4\right)^{2}< \\
& y+2=(x-4)^{2} \\
& y=(x-4)^{2}-2 \\
& \nabla=
\end{aligned}
$$

Example 2
Find the equations for the image of the graph of $y=(x-3)^{2}+2$ with a translation described as $(x, y) \rightarrow(x-2, y+3)$

$$
\begin{aligned}
& (x, y) \rightarrow(x-2, y+3) \\
& x^{\prime}, y^{\prime} \\
& x^{\prime}=x-2 \\
& y^{\prime}=y+3 \\
& x=x^{\prime}+2 \\
& y=y^{\prime}-3
\end{aligned}
$$

$$
\begin{aligned}
y & =(x-3)^{2}+2 \\
y^{\prime}-3 & =\left(x^{\prime}+2-3\right)^{2}+2 \\
y-3 & =(x-1)^{2}+2 \\
y & =(x-1)^{2}+5
\end{aligned}
$$

Another Short cut?

When we have the graph of $y=f(x)$ and we subject it to a translation of h units in the positive x direction and k units in the positive y-direction we can turn $f(x)$ into:

Where you see an ' x ' in the function replace it with $x-h$. Where you see a ' y^{\prime}, replace it with $y-k$

NOTE: Remember that k is a positive movement and h is a positive movement. If there are negative movements, then replace the k or h with a negative value and ensure you take account of the double negatives!

Example:

Find the equation for the image of the curve $f(x)=\frac{1}{x}$ under a translation of 2 units in the negative direction of the x-axis and 3 units in the positive direction of the y-axis.

$$
f(x)=\frac{1}{x}
$$

$y-k$

$$
\begin{aligned}
& f(x)=\frac{1}{x+2} \\
& f(x)-3=\frac{1}{x+2}
\end{aligned}
$$

$$
f(x)=1+3
$$

$$
x+2
$$

