The Area under a graph

Sunday, 17 June 2018
By the end of the teaching I would ask that you complete the following work:
Approximating regions
11A
ac, $2,4,6,7$

By the end of the lesson you should understand the following terms and know how to find the area under a graph:

- Left-endpoint estimate
- Right-end point estimate

RECAP: Finding basic areas
How do you find the area under the function $y=x-2$ between the points where $x=2$ and $x=6$?

$$
\begin{aligned}
A_{0} & =\frac{1}{2} h b \\
& =\frac{1}{2} \cdot 44 \\
& =8 \text { cinits }^{2} \quad S^{2} \\
A_{0} & =\frac{1}{2} 6 \cdot h \\
& =\frac{1}{2} \cdot 2.2 \\
& =2 \text { cuits }^{2} \\
T_{\text {ot }} & =8+2 \\
& =10 \text { curts }^{2}
\end{aligned}
$$

How about if we wanted to find the area between the points where $x=0$ and $x=6$?

Finding areas under graphs with straight line functions is simple really. We use the information from Year 6 to 10 Mathematics.

* What if we need to find the area under a curve?

Areas under curves

How would we find the area under the curve with equation $f:[0,3] \rightarrow \mathbb{R}, f(x)=x^{2}+3$

The left-endpoint estimate

(1) $=3 \times 0.5$
(2) $=3.25 \times 05$
(3) $=4 \times 05$
(4) $=5.25 \times 05$

The right-endpoint estimate

Total Area $=20.375$ units 2

$(1)=3.25 \times 0 \mathrm{~s}=1.625$
(2) $=4 \times 0.5 \quad=12$
(3) $=5.25 \times 05=2.625$
(4) $=7 \times 0.5=3.5$
(J) $=9.25 \times 0.5=4.625$
(6) $=12 \times 0.5=6$

Let's work out the areas and see what happens then!

Things to note:
It would make sense that, the smaller the strips, the closer you would get to the actual area under the graph!

1
Exact Area
To find the exact value of the area under a continuous function you use something called the definite integral. This is expressed using the following notation:
(3)

$$
\begin{gathered}
\sqrt[\int_{a}^{b} f(x) \cdot d x]{\int_{0}\left(x^{2}+3\right) d x=18 \text { un d }_{\substack{\text { us }}}^{2}} \\
f(x)=x^{2}+3
\end{gathered}
$$

