Stationary Points
Wednesday, 9 May $2018 \quad$ 6:52 pm

By the end of the lesson I would ask that the work shown below is completed:

8

RECAP:
We have, over the course of the modules we have been studying, been dealing with lots of different functions.
We have been asked to draw them and move them
In all cases we have been asked to ensure that, when we sketch the graphs of the functions, we include the following
things on the sketch:

- Ax d points (real
- Function label
$\because x$-axis intercepts
- Equations of asymptotes
to At least one co-ordinate outside of those shown above
* The one thing we have been unable to do, until today, is find the co-ordinates of any turning points.

Welcome then to this lesson on stationary points.
$f:[2,4] \rightarrow \mathbb{R}, f(x)=x^{2}+2$

What is a stationary point?
This is basically a point on a graph where then differential of a point is equal to zero.
Or, in a simpler form, a point on the graph where there is zero gradient. Which makes our life easy really!

\underline{L}

In this graph there are three stationary
points.
Three points where there is a gradient of zero.

We can identify these visually.
We can also use algebra.
Remember:
The stationary points (otherwise called

* turning points) are where the gradient is equal to zero.
$\|$ Hence, we can differentiate the function and then solve it for zero.
This will give me all points on the graph where the is a gradient of zero.
We will expect more than one point.
This will give me only the x co-ordinates. We would then substitute them back is original equations to find the y values.

Note:
All coordinates much be expressed in coordinate form on the sketch.

$$
y=x^{3}+\frac{1}{2} x^{2} \quad \begin{array}{ll}
x^{2} \Rightarrow(1) \\
x^{4} \Rightarrow(3)
\end{array}
$$

$$
\begin{aligned}
& 3 x^{2}+x=0 \\
& x(3 x+1)=0
\end{aligned}
$$

$$
\begin{aligned}
& x(3 x+1) \\
& x=0 \text { or } x=-\frac{1}{3}
\end{aligned}
$$

Using the CAS:
(1)
1)

$\frac{1}{2} x^{\wedge} 4+x^{\wedge} 3-3 x^{\wedge} 2+5$
$\stackrel{2}{\Rightarrow}$
$\underset{\rightarrow}{\Rightarrow} \frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\left.\mathrm{x}^{4}+\mathrm{x}^{3}-3 \cdot x^{2}+5\right)}{2 \cdot x^{3}+3 \cdot x^{2}-6 \cdot x}\right.$
(1)

Alg Standard Real Rad

BIG FAT TRICK

Questions will always try and trick you.
The best way to do this is to change the language
Stationary points are also called:
(.) Maximum

- Minimum
- Maxima
- Minima

31

Max $\mu=0$

$$
\frac{-x}{2} \quad x^{4} \Rightarrow(3)
$$

$$
\left\lvert\, \begin{aligned}
& y^{\prime} \\
& n=3 x^{2}+x
\end{aligned}\right.
$$

$\stackrel{\circ}{\circ}$

In these two screen shots I worked out the differential of the function and then solved this by putting it equal to zero.

$\frac{d}{d x}\left(\frac{x^{4}}{2}+x^{3}-3 \cdot x^{2}+5\right)$

$$
2 \cdot x^{3}+3 \cdot x^{2}-6 \cdot x
$$

$$
\xrightarrow{(3)} \text { solve }(2 \cdot \underbrace{3}+3 \cdot x^{2}-6 \cdot x=0, x)
$$

$$
\left\{x=0, x=\frac{-\sqrt{57}}{4}-\frac{3}{4}, x=\frac{\sqrt{57}}{4}-\frac{3}{4}\right\}
$$

$y=\frac{1}{2} x^{4}+x^{3}-3 x^{2}+5 \$$

$$
\begin{aligned}
& y^{\prime}=\frac{2 x^{3}+3 x^{2}-6 x}{\psi} \text { S.P } \Rightarrow m=0 \\
& y^{\prime}=0
\end{aligned}
$$

$$
2 x^{3}+3 x^{2}-6 x=0
$$

$$
\begin{aligned}
& 2 x^{3}+3 x^{2}-6 x=0 \\
& x\left(2 x^{2}+3 x-6\right)=0
\end{aligned}
$$

$$
x=0
$$

$$
x=\frac{-\sqrt{5} 7}{4}-\frac{3}{4}
$$

$$
x=\underline{\frac{\sqrt{57}}{4}-\frac{3}{4}}
$$

Stationary points are also called:
. Maximum

- Minimum
- Maxima
- Minima

Local Maximum

- Turning points

Any of these used in a question are asking you to find stationary points.
Differentiate, solve by putting equal to zero, substitute back into the original equation and find each of they values.

Combining other areas of the course

