

Linear coordinate geometry

Thursday, 3 January 2019 9:34 am

★ By the end of the lesson I would hope that you have an understanding of the concepts below which you can apply to a number of complex questions:

- How to find the distance between two points
- How to find the midpoint of a line segment
- How to find the gradient of a line
- How to find the equation of a line
- How to find equations which are parallel to lines
- How to find equations which are perpendicular to a line

RECAP

This chapter is a review of all the work which has been covered in Methods 1 and 2.

This section builds on the previous sections by showing how coordinate geometry is going to be important in later sections of this book.

A good understanding of algebra is going to be key!

Coordinates and their geometry

Find the distance between two points

(-2, 5) (4, 8)

$$a^2 = b^2 + c^2$$

$$x^2 = 3^2 + 6^2$$

$$x^2 = 9 + 36$$

$$x^2 = 45$$

$$x = \pm \sqrt{45}$$

$$x = \sqrt{45}$$

$$x = \sqrt{9 \times 5}$$

$$x = 3\sqrt{5}$$

Find the midpoint of a line segment

(-2, 5) (4, 8)

$$\left(\frac{-2+4}{2}, \frac{5+8}{2} \right)$$

$$= \left(1, \frac{13}{2} \right)$$

Find the gradient of a line

$$\text{gradient } m = \frac{3}{6} = \frac{1}{2}$$

Find the equation of a line

① m

$(x_1, y_1) = (4, 8)$

$$y - y_1 = m(x - x_1)$$

$$y = \frac{1}{2}x - 2 + 8$$

$$y - 8 = \frac{1}{2}(x - 4)$$

$$y = \frac{1}{2}x + 6$$

$$y - 8 = \frac{1}{2}x - 2$$

=====

Find the equation of the line which is parallel to the line found above which passes through the point $(4, 4)$

$$y - y_1 = m(x - x_1) \quad y = \frac{1}{2}x - 2 + 4$$

$$y - 4 = \frac{1}{2}(x - 4) \quad y = \frac{1}{2}x + 2$$

$$y - 4 = \frac{1}{2}x - 2 \quad \text{=====}$$

$$m_1, m_2 = -1$$

Find the equation of the line which is perpendicular to the line found above and which passes through the midpoint of the two points given

$$m_2 = -\frac{1}{m_1}$$

$$m = -2 \quad (1, \frac{13}{2})$$

$$m_1 = \frac{1}{2}$$

$$m_2 = -\frac{2}{1}$$

$$y - y_1 = m(x - x_1)$$

$$y - \frac{13}{2} = -2(x - 1)$$

$$2y - 13 = -4(x - 1)$$

$$2y - 13 = -4x + 4$$

$$2y = -4x + 17$$

$$y = -2x + \frac{17}{2}$$

=====

$$m = 3$$

$$\tan \theta = \frac{3}{6} = \frac{\text{rise}}{\text{run}} = m$$

$$m = \tan \theta$$

$$\tan \theta = 3$$

$$\theta = \tan^{-1}(3)$$