Linear coordinate geometry

Thursday, 3 January 2019 9:34 am

By the end of the lesson I would hope that you have an understanding of the concepts below which you can apply to a number of complex questions:

- How to find the distance between two points
- How to find the midpoint of a line segment
- How to find the gradient of a line
- How to find the equation of a line
- How to find equations which are parallel to lines
- How to find equations which are perpendicular to a line

RECAP

This chapter is a review of all the work which has been covered in Methods 1 and 2.
This section builds on the previous sections by showing how coordinate geometry is going to be important in later sections of this book.

A good understanding of algebra is going to be key!

Coordinates and their geometry

Find the distance between two points
$(-2,5) \quad(4,8)$
$a^{2}=b^{2}+c^{2}$

6

Find the midpoint of a line segment

$$
\left.\begin{array}{rl}
(-2,5)(4,8) & \left(\frac{-2+4}{2}, \frac{5+8}{2}\right.
\end{array}\right)
$$

Find the gradient of a line

$$
(-2,5) \quad(4,8)
$$

$$
\text { gradient }=m=\frac{3}{6}=\frac{1}{2}
$$

Find the equation of a line

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & y=\frac{1}{2} x-2+8 \\
y-8=\frac{1}{2}(x-4) & y=\frac{1}{2} x+6 \\
y-8=\frac{1}{2} x-2 & \tag{1}
\end{array}
$$

$(x, y) \quad,(4,8)$

Find the equation of the line which is parallel to the line found above which passes through the point $(4,4)$

$$
\begin{array}{lc}
y-y_{1}=m\left(x-x_{1}\right) & y=\frac{1}{2} x-2+4 \\
y-4=\frac{1}{2}(x-4) & y=\frac{1}{2} x+2 \\
y-4=\frac{1}{2} x-2 &
\end{array}
$$

Find the equation of the line which is perpendicular to the line found above and which passes through the midpoint of the two points given

$$
\begin{array}{llrl}
m_{2} & =\frac{-1}{m_{1}} & m=-2 \\
m_{1} & =\frac{1}{2} & y-y_{1} & =m\left(x-x_{1}\right) \\
m_{2}=-\frac{2}{1} & y-\frac{13}{2} & =-2(x-1) \\
2 y-13 & =-4(x-1) \\
2 y-13 & =-4 x+4 \\
2 y & =-4 x+17
\end{array}
$$

$$
y=-2 x+\frac{17}{2}
$$

$$
=
$$

$$
\begin{aligned}
& m=\tan \theta \\
& = \\
& \tan \theta=3 \\
& \theta=\tan ^{-1}(3)
\end{aligned}
$$

