

Learning Objectives

By the end of the lesson I would hope that you have an understanding and be able to apply to questions the following concepts:

- Understand what the gradient of a straight line is
- Know how to find the gradient of a straight line
- Understand that gradients can be positive and negative
- Understand how to identify special lines from their gradients

Recap

This is the start of a new section of the Further Mathematics course and so, there isn't really a recap. However, much of the work which is about to be covered has been covered in Years 9 and 10.

What is gradient?
Gradient is a number given to the slope of a straight line.
The number can be either positive or negative.
It can be a whole number, fraction or decimal.

How to find the gradient of a straight line

We can use one of two formulae to find the gradient of a straight line.

$$
\begin{aligned}
& \text { Gradient }=\frac{\text { rise }}{\text { run }} \\
& \text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Examples of how to find gradients

Find the gradient of this line.

Gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$=\frac{2}{2}$

$$
\begin{aligned}
& (0,2) \quad(-2,0) \\
& \text { Grad }=\frac{y_{2}-y_{1}}{x_{2}-x}=\frac{0-2}{-2-0}
\end{aligned}
$$

$$
=-2
$$

$$
-2
$$

$$
=1
$$

Examples of how to find gradients

Find the gradient of this line.

Gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Grad $=$ Rise
$\begin{aligned} & R m \\ = & \frac{-3}{2}\end{aligned}$

$$
(0,3) \quad(2,0)
$$

$$
\text { Grad }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=0-3
$$

$$
2-0
$$

$$
=-3
$$

$$
2
$$

Examples have been extracted, with permission, from the Cambridge Further Mathematics Units 3 and 4 Textbook

Special lines
There are a number of "special" lines which have gradients we need to learn.
Example:
Find the gradient of the line which connects the points $(1,3)$ and $(5,3)$

$$
\begin{aligned}
(1,3) & (5,3) \\
\operatorname{grad} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3-3}{5-1} \\
& =\frac{0}{4}=0
\end{aligned}
$$

Special lines

There are a number of "special" lines which have gradients we need to learn.

Example:

Find the gradient of the line which connects the points $(3,1)$ and $(3,10)$

$$
\begin{aligned}
(3,1) & (3,10) \\
\text { Grad } & =\frac{y_{2}-y}{x_{2}-x_{1}} \\
& =\frac{10-1}{3-3} \\
& =\frac{9}{0}=\infty
\end{aligned}
$$

