

Calculating the correlation coefficient

Tuesday, 26 February 2019 5:56 PM

★ By the end of the lesson I would hope that you have an understanding and be able to apply to questions the following concepts:

- Know how to calculate Pearson's correlation coefficient by hand
- Know how to use a CAS to calculate the correlation coefficient
- Know how to interpret the results

RECAP:

In a previous lesson we were introduced to the idea of Pearson's correlation coefficient. This is basically a numerical value to give a measure of the linearity of a series of points on a scatter plot.

The values of r , Pearson's correlation coefficient, fall between -1 and 1 .
The value of r can only be used to describe linear relationships.

There was a table which we can use to convert between the value of r and a worded description.

Strong positive association: r between 0.75 and 0.99
Moderate positive association: r between 0.5 and 0.74
Weak positive association: r between 0.25 and 0.49
No association: r between -0.24 and $+0.24$
Weak negative association: r between -0.25 and -0.49
Moderate negative association: r between -0.5 and -0.74
Strong negative association: r between -0.75 and -0.99

In this lesson we're going to use a formula to help us calculate the value of r and our CAS.

Finding r by hand

Here is the formula you are going to need to use.
It looks pretty disgusting yes?!

$$r = \frac{\sum(x - \bar{x})(y - \bar{y})}{(n - 1)s_x s_y}$$

x : x data item
 y : y data item
 \bar{x} : Mean (or average) of the x data
 \bar{y} : Mean (or average) of the y data
 s_x : Standard Deviation of the x data
 s_y : Standard Deviation of the y data

$$r = \frac{\sum(x - \bar{x})(y - \bar{y})}{(n - 1)s_x s_y}$$

Here is an example of how to use it.

Find the value of r for the following data items

x	1	3	5	4	7
y	2	5	7	2	9

$$r = \frac{\sum(x - \bar{x})(y - \bar{y})}{(n - 1)s_x s_y}$$

We can use the CAS to help us find the values of \bar{x} , \bar{y} , s_x and s_y but that comes in a different lesson.
For now, know the following:

$$(n-1) s_x s_y$$

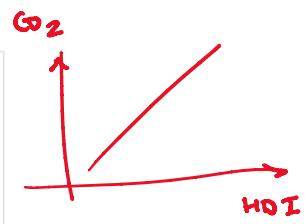
We can use the CAS to help us find the values of \bar{x} , \bar{y} , s_x and s_y but that comes in a different lesson.
For now, know the following:

\bar{x} : 4
 \bar{y} : 5
 s_x : 2.236
 s_y : 3.082

x	y	$x - \bar{x}$	$y - \bar{y}$	r
1	2	-3	-3	9
3	5	-1	0	0
5	7	1	2	2
4	2	0	-3	0
7	9	3	4	12
				<u>23</u>

$$r = \frac{23}{\sqrt{4 \times 2.236 \times 3.082}} = \underline{\underline{0.834}}$$

Using the CAS to find the value of r


Using a calculator

VCAA Exam Question on this concept
2016 Paper 1

10/

