Distance and midpoints

Wednesday, 16 January 2019 7:53 am
By the end of the lesson I would hope that you have an understanding of the concepts below which you can apply to a number of complex questions:

- Know what it means by the term midpoint
- Know how to find the midpoint of line segments which are
- Parallel to an axis

Not parallel to an axis

- Know how to find the distance between two points

RECAP

Not really too much to recap as this is the start of a new chapter
The good news is ... we already know some of the theory from Year 9 Mathematics.
I'm going to start the lesson backwards!

Two points on a cartesian plane
Look at the following two points:

You can draw a line between any two point.
Where I see a diagonal line then I know that I can turn this into a right angled triangle.
As soon as I have a right angled triangle I know I can use Pythagoras' Theorem to find the length of the line segment which will join the two points.

This is a lot simpler than you might think.
Look at the following examples:

$$
\begin{aligned}
& \frac{1}{2} \text { way }-3+2 \\
& \frac{-3+2}{2}=-\frac{1}{2} \\
& \therefore \text { midst }=(-1 / 2,5)
\end{aligned}
$$

$$
(2,3 / 2)
$$

$$
\frac{5+(-2)}{2}-\frac{3}{2}
$$

$\left.(-2)^{2}\right)$

$$
\begin{aligned}
& \left(\frac{-2+2}{2}, \frac{2+5}{2}\right) \\
& =(0, \geqslant 2)
\end{aligned}
$$

As is normal, Barry makes things far more challenging than they need to.
There is this overwhelming need to have formulae for everything in Mathematics! Methods 1 and 2 asks that you remember the following formulae:

$a=\sqrt{\left(x_{2}-x_{1}\right)^{2}}+\left(y_{2}-y_{1}\right)^{2}$

Final Example:

Find the midpoint and distance of the line segment joining the points $A(1,5)$ and $B(-2,-3)$

$$
(-2),(-3))
$$

x, y.
$\begin{array}{ll}x_{2} & y_{2}\end{array}$
$\begin{aligned} M P & =\left(\frac{1+(-2)}{2}, \frac{5+(-3)}{2}\right) \\ & =\left(-\frac{1}{2}, 1\right)\end{aligned}$

$$
\begin{aligned}
& x^{2}=8^{2}+3^{2} \\
& x^{2}=64+9 \\
& x^{2}=73
\end{aligned}
$$

$$
x= \pm \sqrt{73}
$$

$$
x=\underline{\sqrt{73}}
$$

