Solving exponentials equations using logarithms

Year 10 Mathematics

Learning Objectives

By the end of the lesson, I would hope that you have an understanding and be able to apply to questions the following concepts:

- To know how to solve exponential equations by rewriting in logarithmic form using the given base
- To be able to solve an exponential equation using base 10
- To be able to use technology to evaluate logarithms

Recap of past learning

If you are watching this in order, you will now know:

- How to convert "normal numbers" into logarithmic numbers
- What a log graph looks like
- How to manipulate logs by:
 - Adding
 - Multiplying
 - Raising them to a power
- As well as some of the more important log rules

All of the above means we can now start to use the learning to **solve equations**.

$$\log_{a} x + \log_{a} y = \log_{a}(xy) \qquad a^{x} = y$$

$$\log_{a} x - \log_{a} y = \log_{a}\left(\frac{x}{y}\right) \qquad \downarrow$$

$$\log_{a}(x^{n}) = n\log_{a}(x) \qquad \downarrow$$

$$\log_{a} 1 = 0$$

$$\log_{a} a = 1 \qquad \log_{a}(x^{-1}) = -\log_{a} x$$

$$\log_{a}\left(\frac{1}{x}\right) = \log_{a}(x^{-1}) = -\log_{a} x$$

What is an equation?

This is where we have an expression equals to something. Generally, we want to be able to find the value of a pronumeral (or unknown) which will make the equation true on both sides.

It's useful to think of this as finding the **points of intersection** of two graphs!

When we have something like $x^2 + 2x - 5 = 0$ what we are really doing is finding the crossing points of the graph $x^2 + 2x - 5$ and the line y = 0

Finding the solutions to harder questions

It's not easy to find the solutions using pencil and paper methods to the following:

$$10^{x} = 20$$

We could draw a graph!

$$y = (D^{T} \quad y = 2\tau$$

Hold on .. This look nothing like the logarithm graph!!!

Examples have been extracted, with permission, from the Cambridge Essentials (Year 10) Textbook

What if we don't have access to Desmos?

Then we can use the CAS to solve this for us:

 $10^{x} = 20$

0	Edit /	Action	Inte	ractiv	е			X
$15 \frac{1}{2}$	₼►	∫dx ∫dx↓	Simp	<u>fdx</u>		₩	•	Þ
solv	e(10	^x=2	0,x)					
			{x=1	. 30	102	2999	6}	

Another way to solve this

Then we can use the CAS to solve this for us:

 $10^x = 20$ $x = \log_{10} 20$

x = 20

$$Dg_{10} = x$$

0	Edit Action Interactive	X
		Þ
sol	ve(10^x=20,x)	
	{x=1.301029996}	
0	Edit Action Interactive	X
		ŀ
sol	$ve(10^x=20^x)$	
1001	((IO A-20)A)	
501	{x=1.301029996}	
log	{x=1.301029996} (10,20)	
log	{x=1.301029996} (10,20) 1.301029996	
	{x=1.301029996} (10,20) 1.301029996	

Examples have been extracted, with permission, from the Cambridge Essentials (Year 10) Textbook

Example: Solving using the given base

Solve the following using the given base. Round your answer to three decimal places. **a** $2^x = 7$ **b** $50 \times 1.1^x = 100$

 $a. \quad 2^{x} = 7$ $\log_{2} 7 = x$ x = 2.807

b.
$$50 \times 1 \cdot 1^{x} = 100$$

 $1 \cdot 1^{x} = 2$
 $\log_{1 \cdot 1} 2 = 2$
 $x = 7 \cdot 272$

Examples have been extracted, with permission, from the Cambridge Essentials (Year 10) Textbook

Example: Solving using base 10

Solve using base 10 and evaluate, correct to three decimal places. a $3^{x} = 5$

b $1000 \times 0.93^{x} = 100$

С.

log 10 3 × = log 10 5 x. 109103 = 109105 $x = \frac{\log_{10} 5}{\log_{10} 3}$

2 = 1.465

001 = 2600 × 0001 Ь, 0.93² = 0.1 log₁₀ 0.93⁸ = log₁₀ 0.1 26- log, 0-93 = log, 0' $x = \log_{10} 0.1$ 10510 0-93 = 31.729

Examples have been extracted, with permission, from the Cambridge Essentials (Year 10) Textbook

Change of base formula

This is a little outside of the "standard" Year 10 course, but it's interesting to look at something called the "Change of Base" formula

i = y 0 log b ax IDG $sc_{10} = 10 g_{1} g_{1}$ x= logby logb a 10gby $\overline{}$ logay G log_1

togay = x

Examples have been extracted, with permission, from the Cambridge Essentials (Year 10) Textbook

Example: Change of base formula

Let's see how this might be applied:

Use the change of base formula to write the following with a base of 10:

log₂ 7

10527 = 105107 105102

Learning Objectives: Recapped

By the end of the lesson, I would hope that you have an understanding and be able to apply to questions the following concepts:

- To know how to solve exponential equations by rewriting in logarithmic form using the given base
- To be able to solve an exponential equation using base 10
- To be able to use technology to evaluate logarithms

