Sketching parabolas with factorisation

Tuesday, 9 October 2018 4:40 PM

By the end of the lesson I would hope that you have an understanding of the following. I would also hope that you can apply the understanding to a number of different questions and question types

- How to factorise using the T-Method and the Null Factor Law
- How to find the x-axis intercepts
- How to find the turning points from the x-axis intercepts
- How to find the y-axis intercept
- How to use the above information to draw a sketch

Recap

We have, in previous lessons, spent a lot of time learning how to factorise and solve quadratics.
We have come to the opinion that, we do all this hard work in order to give us 4 main pieces of information:

Turning point (coordinate!)

We are now going to use all that algebra to now sketch some curves.
There are four main ways of using the Mathematics to sketch a parabola:

- Using transformations
- Using Factorisation
- Using Completing the Square
- Using the Quadratic Formula

This lesson is going to recap the work for T-Method and factorising using the Null Factor Law and show how we can use them to sketch parabolas.

RECAP: T-Method

The T-Method is one way of factorising a quadratic to place it into binomial product form Once it's in the binomial product form we know we use the null factor law to find two solutions.

Example:
Factorise $y=x^{2}+x-6$
3

* $y=x^{2}-2 x+3 x-6$

Note: The name for the shape of a quadratic is parabola.

CTS
$T-x \cdot a x s s$ int

Tuning pts

$$
b^{2}-4 a c
$$

Qt

Factorise $\left.y=x^{2}+x\right)-6$ -
(4)

* $y=x^{2}-2 x+3 x-6$ \# $=x(x-2)+3(x-2)$
$=(x-2)(x+3)$

-6	
-1	6
-2	3
-3	2

$-6 \quad 1$

Example:

Factorise $y=2 x^{2}+5 x-12$

$$
\begin{aligned}
y & =\frac{2 x^{2}-3 x+8 x-12}{} \\
& =(2 x-3)+4(2 x-3) \\
& =(2 x-3)(x+4)
\end{aligned}
$$

Once they have been put into binomial product form we can solve the equations for $y=0$ and use the null factor law to solve them two find two values of x. These values happen to be the x-axis intercepts.

Example:

* Solve $x^{2}+x-6=0$

$$
\begin{array}{lrrr}
0 \times 0=0 & \text { No L } & (x-2)(x+3)=0 \\
\underline{x} \times 0=0 & & = \\
0 \times \underline{x}=0 & x-2=0 \text { or } x+3=0 \\
& x=2 & x=-3
\end{array}
$$

$$
\begin{aligned}
y= & x^{2}+x-6 \\
& x^{2}+x-6=y \\
& x^{2}+x-6=0
\end{aligned}
$$

Example:

Solve $2 x^{2}+5 x-12=0$

$$
2 x^{2}+5 x-12=0
$$

NHL

$$
\begin{array}{lll}
(2 x-3)(x+4)=0 \\
1 & & \\
2 x-3=0 & \text { or } & x+4=0 \\
2 x=3 & & x=-4 \\
x=\frac{3}{2} &
\end{array}
$$

$$
5
$$

Nr

Recap: Finding the turning point from two x-axis intercepts
We have spent a lot of time solving the quadratic equations but not a lot of time drawing them.
We must remember, at all times, that a quadratic equation is symmetrical. This line of symmetry is actually drawn through the turning point.

axis of sym

The great thing we notice that that the x-value of the turning points happens to lie exactly between the two x-values of the intercepts on the x-axis.

So, looking at the example on the left:

$$
\frac{1.586+4.414}{2}=3
$$

This is an important observation.
Knowing that the x-value of the turning point lies between the two values of the x-axis intercepts, we can find the coordinate of the turning point.

Example:

Find the turning point of: $y=x^{2}+x-6$

$$
\begin{aligned}
& x=\frac{x}{x=2+(-3)} \\
& 2 \\
& =\frac{-1}{2} \\
& y \\
& =\frac{\left(-\frac{1}{2}\right)^{2}+\left(-\frac{1}{2}\right)-6}{4}-\frac{1}{2}-6
\end{aligned}
$$

$$
y=-\frac{1}{4}-6
$$

$$
\left(-1 / 2,-6^{1 / 4}\right)
$$

x

Example:

Find the turning point of $y=2 x^{2}+5 x-12$

$$
\begin{align*}
& x=\frac{3}{2} \quad x=-4 \\
& \frac{3}{2}+(-4) \\
& \frac{1.5-4}{2} \\
& \text { TiP. } \\
& \frac{3}{2}-1.25
\end{align*}
$$

We now have three pieces of information!
We can find the final piece by considering the fact that the y-intercept is found at the point where x is zero.

Example:

Find the y-axis intercept of: $y=x^{2}+x-6$

$$
\begin{aligned}
y & =(0)^{2}+0-6 \\
x=0 \quad & =-6
\end{aligned}
$$

Example:

Find the y-axis intercept of $y=2 x^{2}+5 x-12$

$$
x=0 \quad \begin{aligned}
y & =2(0)^{3}+8(0)-12 \\
& =-12
\end{aligned}
$$

Bringing it home
We now have all the information we need to be able to sketch the graphs we have been considering:

Example:

Sketch the graph of: $y=x^{2}+x-6$

Example:

Sketch the graph of $y=2 x^{2}+5 x-12$
(-1.25,-15 125)
$3 / 2$
-4
-12

Tips and Tricks

Remember that Maths is going to try and trick you!

You need to remember that we only use the T-Method when there are three terms which need to be factorised.

When there are two terms this is going to be a massive trick!
Example:
Sketch $y=x^{2}+4 x$

$$
\begin{aligned}
& y=x(x+4) \\
& x(x+4)=0 \\
& x=0 x=-4 \\
& \frac{0+(-4)}{2} \\
& x=\frac{-2}{2}
\end{aligned}
$$

$$
\begin{aligned}
x & =-\frac{2}{2} \\
y & =(-2)^{2}+4(-2) \\
& =4-8 \\
& =-4
\end{aligned}
$$

Example:
Sketch $y=x^{2}-16$

$$
\begin{gathered}
y=(x+4)(x-4) \\
(x+4)(x-4)=0 \\
x=4 \text { or } x=-4 \\
\text { TP: } x=0 \\
y=-16
\end{gathered}
$$

Example:
Sketch $y=x^{2}+4 x-4$

$$
\begin{aligned}
& y=(x+2)^{2} \\
& y_{\text {int }} \\
& x=0 \\
& y=(0 \times 2)^{2} \\
&=4
\end{aligned}
$$

Example:
Sketch the graph of $y=9-x^{2}$

$$
\%
$$

$$
\begin{aligned}
y & =9-(0)^{2} \\
& =9
\end{aligned} \quad x=0
$$

$$
\begin{array}{lll}
y=(3-x)(3+x) & \\
3-x=0 & \text { or } & 3+x=0 \\
x=3 & x=-3
\end{array}
$$

